Spartan-3E Libraries Guide
for HDL Designs

S XILINX®



SXILINX® About This Guide

2 XILINX®

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 1995-2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks
of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.

2 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



SUXILINX®

About this Guide

Guide Contents

The Spartan™-3E Libraries Guide for HDL Designs is part of the ISE documentation
collection. A separate version of this guide is also available for users who prefer to
work with schematics in their circuit design activities. (See the Spartan™.-3E Libraries
Guide for Schematic Designs.)

This guide contains the following:
¢ Information about additional resources and conventions used in this guide.
e A general introduction to the Spartan-3E primitives.

e Alisting of the primitives and macros that are supported by the Spartan-3E archi-
tecture, organized by functional categories.

e Individual sections for each of the primitive design elements, including VHDL
and Verilog instantiation and inference code examples.

e Referrals to additional sources of information.

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or
to create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each
convention.
Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example
Courier font Messages, prompts, and program |speed grade: - 100
files that the system displays
Courier bold Literal commands that you enter in [ngdbuild design_name
a syntactical statement
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 3

ISE 8.2i


http://www.xilinx.com/literature/index.htm
http://www.xilinx.com/support

SUXILINX®

Convention

Meaning or Use

Example

Helvetica bold

Commands that you select from a
menu

File -Open

Keyboard shortcuts

Ctrl+C

Italic font

which you must supply values

Variables in a syntax statement for

ngdbuild design_name

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [ ]

An optional entry or parameter.
However, in bus specifications,
such asbus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces {} A list of items from which you lowpwr ={on|off}
must choose one or more
Vertical bar | Separates items in a list of choices |lowpwr ={on|off}

Vertical ellipsis

Repetitive material that has been
omitted

IOB #1:
IOB #2:

Name = QOUT’
Name = CLKIN’

Horizontal ellipsis ...

Repetitive material that has been
omitted

allow block block_name locl
loc2 ... locn;

Online Document

Introduction

The following conventions are used in this document:

in another document

Convention Meaning or Use Example
Blue text Cross-reference link to a location |See the section “Additional
in the current document Resources” for details.
Red text Cross-reference link to a location |See Figure 2-5 in the Virtex-4

Handbook.

Blue, underlined text

Hyperlink to a website (URL)

Go to http:/ /www.xilinx.com
for the latest speed files.

This version of the Libraries Guide describes the primitive and macro design elements
that make up the Xilinx Unified Libraries and are supported by the Spartan-3E
architecture, and includes examples of instantiation and inference code for each

primitive.

Xilinx maintains software libraries with hundreds of functional design elements
(primitives and macros) for a variety of device architectures. New functional elements
are assembled with each release of development system software. In addition to a
comprehensive, unified library containing all design elements, beginning in 2004,
Xilinx developed a separate library for each architecture. This Spartan-3E guide is one
in a series of architecture-specific libraries.

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



SUXILINX®

This guide describes the primitive elements available for Xilinx Spartan-3E FPGA
devices. Common logic functions can be implemented with these elements and more
complex functions can be built by combining macros and primitives.

Functional Categories

The functional categories list the available design elements in each category, along
with a brief description of each element that is supported under each Xilinx
architecture.

Attributes and Constraints

The terms attribute and constraint have been used interchangeably by some in the
engineering community, while others ascribe different meanings to these terms. In
addition, language constructs use the terms attribute and directive in similar yet
different senses. For the purpose of clarification, the following distinction can be
drawn between these terms.

An attribute is a property associated with a device architecture primitive that affects
an instantiated primitive’s functionality or implementation. Attributes are typically
conveyed as follows:

e In VHDL, by means of generic maps.

e In Verilog, by means of defparams or inline parameter passing during the
instantiation process.

Constraints impose user-defined parameters on the operation of ISE tools. There are
two types of constraints:

e Synthesis Constraints direct the synthesis tool optimization technique for a
particular design or piece of HDL code. They are either embedded within the
VHDL or Verilog code, or within a separate synthesis constraints file.

o Implementation Constraints are instructions given to the FPGA implementation
tools to direct the mapping, placement, timing, or other guidelines for the
implementation tools to follow while processing an FPGA design.
Implementation constraints are generally placed in the UCF file, but can exist in
the HDL code, or in a synthesis constraints file.

Attributes are identified with the components to which they apply in the libraries
guide for those components. Constraints are documented in the Xilinx Constraints
Guide. Both resources are available from the Xilinx Software Manuals collection.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 5

ISE 8.2i

1-800-255-7778



SUXILINX®

6 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



SUXILINX®

Table of Contents

About this Guide

GUIAE CONEEIUES ...ttt e e st esaeeae st et et et eaeeneenesasesessessenean 3
AdItIONA] RESOUICES ..ottt ee et eeee e eeeeeeeaeesesteseeeeet et eeeseseeseeseesesseneens 3
CONVEINELIONS ...ttt e et et e et st eee st saesaeeseesestensentestenseneenesasesesseasesaennenns 3
INEFOAUCHION. ..ottt et et et e e v st e et et eae e nesaneteeneesesaenenns 4
FUNCHONAL CAt@GOTIOS ...ttt et et e e eeeeaeeaesteeeeee et eneeeeseseeeseeneesesaeeaeans 5
Attributes and CONSEIAINTS ........o.ooviovieieeeeeeeeeee ettt ese s eaene 5

Functional Categories

ATITRMEIC FUNCHONS ..ottt ettt et enesaeaeans
Clock Components ......................

Config/BSCAN Components
I/O Components ..........ccceueune....

RAMUIROM ..ottt e et ee s e s et s e eae et saeeteseeeeae et ene et eeeeseneeeereeseneeeene
Registers QL LALCRIOS ...ttt ettt e et eee ettt ee e e e e enene
SIIFE REGISTEIS ...ttt et e e e e e e s e es e st e s e et et enseneenesasesesnesnans
SHICE/CLB PIIIMETIVES ...ttt ettt ettt et ea e eaesesesesseesessesseeneaeen

About the Spartan-3E Design Elements

BUEFGMUX T ....cocooiiiiiiiiiencccrreee ettt esese e 25
CAPTURE_SPARTANS ...ttt ettt sttt ettt sttt et 27

LUTT, 2, 3,4 oottt ettt ettt et st et st b e st et eb et et et e e s esessenensens 57
LUT1_D, LUT2_D, LUT3_D, LUTZ_D ....ccoceiiiiiceetcceeteeceeeeeie e 63
LUTI_L, LUT2 L, LUT3_L, LUTZ_L ..ottt 69
IMULT _AND ...ttt ettt sttt st sttt et b et eb e e et eseebesaesasaeseneens 75
MULTTIBXIBSTO ...ttt ettt ettt ettt 77
IMIUXICY ettt ettt ettt ettt ettt e e nsens 79
IMIUXCY D ettt ettt ettt ettt e e s 81
IMIUXCY L ettt ettt ettt ettt 83
IMIUXED ...ttt ettt bbbt b et e b bbb b ebese st et stsss s b et ee s st ebesesnasene 85
IMUXEB_D oottt ettt bbbttt b bt b b etes s sasetesnns 87
IMIIUXES _L ..ttt bbbt bbbttt bttt bne 89
IMIUXEG ...ttt bbbttt b et bbb se st b bt sss s bt et s s ebesessasens 91
IMIUXEG_D ...ttt bbb b et bbbt s et etes s sasetesnns 93
IMIIUXEG _L ...ttt bbbt bbbttt bttt 95
IMIUXET ..ottt ettt ettt bbbt b bbb bt b bt ese st bt stess s besee st ebesessasene 97
IMIUXET7_D oottt ettt bbb bt b et et se b ebetessesasesesens 99
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 7

ISE 8.2i 1-800-255-7778



SUXILINX®

PULLDOWN ...
PULLUP ...
RAM16X1D ......

RAMIOXLS ..ottt ettt ettt es e
RAMB2XTD ..ottt ettt ettt
RAMB2XLS ..ottt
RADMEGAXLS ...ttt ettt bbbt
RAM128X1S
RAMBIO_SH_ST ..ottt 139
RAMBIO_ST1 ..ottt et 151
ROMIOXT ..ottt ettt ettt ettt 155
ROMB2XT ..ottt ettt et et eees 157
ROMBBLXT ...ttt ettt et 159
ROMI2EXT ..ottt ettt ettt sttt bttt bbb es e 161
ROMEE5OXT ...ttt e et ene e 163
SRLCIOE ..ottt et 165
STARTUP_SPARTANSIE ..ottt ettt ettt 167
XORE Y ..ttt ettt et 169
XORECY D ettt ettt 171
XORECY _L ottt ettt bbbttt bbbt 173

8 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



Arithmetic Functions S XILINX®

Functional Categories

This section categorizes, by function, the Spartan-3E design elements described in
detail later in this guide. The elements (primitive and macro implementations) are
listed in alphanumeric order under each of the following functional categories:

Arithmetic Functions I/0O Components Shift Registers
Clock Components RAM/ROM Slice/CLB Primitives
Config/BSCAN Components Registers & Latches

Arithmetic Functions

Design Element Description

MULT18X18SIO Primitive: 18x18 Cascadable Signed Multiplier with Optional Input and Output registers, Clock Enable, and Synchronous Reset

Clock Components

Design Element Description
BUFG Primitive : Global Clock Buffer
BUFGCE Primitive : Global Clock with Clock Enable
BUFGCE_1 Primitive : Global Clock Buffer with Clock Enable and Output State 1
BUFGMUX Primitive : Global Clock MUX Buffer
BUFGMUX_1 Primitive : Global Clock MUX Buffer with Output State 1
DCM_SpP Primitive: Digital Clock Manager
Config/BSCAN Components
Design Element Description

BSCAN_SPARTAN3 Primitive: Spartan-3 Boundary Scan Logic Control Circuit

CAPTURE_SPARTAN3 | Primitive: Spartan-3 Register State Capture for Bitstream Readback

STARTUP_SPARTANGSE | Primitive : Spartan-3E User Interface to the GSR, GTS, Configuration Startup Sequence and Multi-Boot Trigger Circuitry

/0 Components

Design Element Description
IBUF Primitive : Single-Ended Input Buffer with Selectable I/O Standard
IBUFDS Primitive : Differential Signaling Input Buffer with Selectable I/O Interface
IBUFG Primitive : Dedicated Input Buffer with Selectable I/O Interface
IBUFGDS Primitive : Dedicated Differential Signaling Input Buffer with Selectable I/O Interface
IDDR2 Primitive: Dual Data Rate Input D Flip-Flop with Optional Data Alignment, Clock Enable and Programmable Synchronous or
Asynchronous Set/Reset

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 9
ISE 8.2i



SUXILINX®

RAM/ROM

Design Element Description
OBUF Primitive: Single- Ended Output Buffer
ODDR2 Primitive: Dual Data Rate Output D Flip-Flop with Optional Data Alignment, Clock Enable and Programmable Synchronous or
Asynchronous Set/Reset
IOBUF Primitive : bidirectional Buffer with Selectable I/O Interface with Active Low Output Enable
IOBUFDS Primitive : 3-State Differential Signaling I/O Buffer with Active Low Output Enable and with Selectable I/O Interface
KEEPER Primitive : KEEPER Symbol
OBUFDS Primitive : Differential Signaling Output Buffer with Selectable I/O Interface
OBUFT Primitive: 3-State Output Buffer with Active Low Output Enable and with Selectable I/O Interface
OBUFTDS Primitive : 3-State Output Buffer with Differential Signaling, Active-Low Output Enable, and Selectable I/O Interface
PULLDOWN Primitive : Resistor to GND for Input Pads
PULLUP Primitive : Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

RAM/ROM

Design Element

Description

RAM16X1D Primitive : 16-Deep by 1-Wide Static Dual Port Synchronous RAM
RAM16X1S Primitive : 16-Deep by 1-Wide Static Synchronous RAM

RAM32X1D Primitive : 32-Deep by 1-Wide Static Dual Static Port Synchronous RAM
RAMB32X1S Primitive: 32-Deep by 1-Wide Static Synchronous RAM

RAM64X1S Primitive: 64-Deep by 1-Wide Static Synchronous RAM

RAM128X1S Primitive : 128-Deep by 1-Wide Static Synchronous RAM

RAMB16_Sm_Sn

Primitive : 16384-Bit Data Memory and 2048-Bit Parity Memory, Dual-Port Synchronous Block RAM with Port Width (m or n)
Configured to 1, 2,4, 9, 18, or 36 Bits

RAMB16_Sn Primitive : 16384-Bit Data Memory and 2048-Bit Parity Memory, Single-Port Synchronous Block RAM with Port Width (n)
Configured to 1, 2, 4, 9, 18, or 36 Bits

ROM16X1 Primitive: 16-Deep by 1-Wide ROM

ROM32X1 Primitive: 32-Deep by 1-Wide ROM

ROM64X1 Primitive: 64-Deep by 1-Wide ROM

ROM128X1 Primitive: 128-Deep by 1-Wide ROM

ROM256X1 Primitive: 256-Deep by 1-Wide ROM

Registers & Latches

Design Element

Description

FDCPE Primitive : D Flip-Flop with Clock Enable and Asynchronous Preset and Clear
FDRSE Primitive : D Flip-Flop with Synchronous Reset and Set and Clock Enable
LDCPE Primitive : Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

Shift Registers

Design Element

Description

SRLC16E

Primitive : 16-Bit Shift Register Look-Up-Table (LUT) with Carry and Clock Enable

Slice/CLB Primitives

Design Element

Description

LUT1

Primitive : 1-Bit Look-Up-Table with General Output

LUT2

Primitive : 2-Bit Look-Up-Table with General Output

10

www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i




Slice/CLB Primitives

SUXILINX®

Design Element Description

LUT3 Primitive : 3-Bit Look-Up-Table with General Output

LUT4 Primitive : 4-Bit Look-Up-Table with General Output

LUTI_D Primitive : 1-Bit Look-Up-Table with Dual Output

LUT2_D Primitive : 2-Bit Look-Up-Table with Dual Output

LUT3_D Primitive : 3-Bit Look-Up-Table with Dual Output

LUT4_D Primitive : 4-Bit Look-Up-Table with Dual Output

LUT1_L Primitive : 1-Bit Look-Up-Table with Local Output

LUT2_L Primitive : 2-Bit Look-Up-Table with Local Output

LUT3_L Primitive : 3-Bit Look-Up-Table with Local Output

LUT4_L Primitive : 4-Bit Look-Up-Table with Local Output

MULT_AND Primitive : Fast Multiplier AND

MUXCY Primitive : 2-to-1 Multiplexer for Carry Logic with General Output

MUXCY_D Primitive : 2-to-1 Multiplexer for Carry Logic with Dual Output

MUXCY_L Primitive : 2-to-1 Multiplexer for Carry Logic with Local Output

MUXF5 Primitive : 2-to-1 Look-Up Table Multiplexer with General Output

MUXF5_D Primitive : 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXF5_L Primitive : 2-to-1 Look-Up Table Multiplexer with Local Output

MUXF6 Primitive : 2-to-1 Look-Up Table Multiplexer with General Output

MUXF6_D Primitive : 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXF6_L Primitive : 2-to-1 Look-Up Table Multiplexer with Local Output

MUXF7 Primitive : 2-to-1 Look-Up Table Multiplexer with General Output

MUXF7_D Primitive : 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXF7_L Primitive : 2-to-1 Look-Up Table Multiplexer with Local Output

MUXE8 Primitive : 2-to-1 Look-Up Table Multiplexer with General Output

MUXE8_D Primitive : 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXEF8_L Primitive : 2-to-1 Look-Up Table Multiplexer with Local Output

XORCY Primitive : XOR for Carry Logic with General Output

XORCY_D Primitive : XOR for Carry Logic with Dual Output

XORCY_L Primitive : XOR for Carry Logic with Local Output
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 11

ISE 8.2i

1-800-255-7778




STXILINX® Slice/CLB Primitives

12 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



SUXILINX®

About the Spartan-3E Design Elements

The remaining sections in this guide describe each primitive design element that can
be used under the Spartan-3E architecture.

The design elements are organized in alphanumeric order, with all numeric suffixes in
ascending order. For example, FDCPE precedes FDRSE, and IBUF precedes IBUFDS.

The following information is provided for each library element, where applicable:

Name of each element.
Description of each element, including truth tables, where applicable.

A description of the attributes associated with each design element, where
appropriate.

Examples of VHDL and Verilog instantiation and inference code, where
applicable.

Referrals to additional sources of information.

Designers who prefer to work with schematics are encouraged to consult the Spartan-
3E Libraries Guide for Schematic Designs.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 13

ISE 8.2i



SUXILINX®

14 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



BSCAN_SPARTA

N3

SUXILINX®

BSCAN_SPARTAN3

Primitive: Spartan-3 Boundary Scan Logic Control Circuit

BSCAN_SPARTAN3

TDO1
TDO2

UPDATE

SHIFT

RESET

TDI

SEL1

DRCK1

SEL2

DRCK2

CAPTURE

xt0183

-- BSCAN_SPARTAN3

-= VHDL

-- instance
-= declaration
-= code

-- Library
-= declaration
-= for

-- Xilinx

-— primitives

BSCAN_SPARTANS3 provides access to the BSCAN sites on a Spartan-3E device. It
creates internal boundary scan chains. The 4-pin JTAG interface (TDI, TDO, TCK, and
TMS) consists of dedicated pins in Spartan-3E devices. To use normal JTAG for
boundary scan purposes, hook up the JTAG pins to the port and go. The pins on the
BSCAN_SPARTANS3 symbol do not need to be connected, unless those special
functions are needed to drive an internal scan chain.

A signal on the TDO1 input is passed to the external TDO output when the USER1
instruction is executed; the SEL1 output goes High to indicate that the USER1
instruction is active.The DRCK1 output provides USER1 access to the data register
clock (generated by the TAP controller). The TDO2 and SEL2 pins perform a similar
function for the USER?2 instruction and the DRCK2 output provides USER?2 access to
the data register clock (generated by the TAP controller). The RESET, UPDATE,
SHIFT, and CAPTURE pins represent the decoding of the corresponding state of the
boundary scan internal state machine. The TDI pin provides access to the TDI signal
of the JTAG port in order to shift data into an internal scan chain.

Usage

This design element is instantiated, rather than inferred.

VHDL Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (BSCAN_SPARTAN3_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly

connect this function to the design. Delete or comment

out inputs/outs that are not necessary.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- BSCAN_SPARTAN3:

Boundary Scan primitive for connecting internal logic to
JTAG interface. Spartan-3

-- Xilinx HDL Libraries Guide version 8.11

BSCAN_SPARTAN3_inst : BSCAN_SPARTAN3

port map (

CAPTURE => CAPTURE, -- CAPTURE output from TAP controller
DRCK1 => DRCK1,
DRCK2 => DRCK2,
RESET => RESET,
SEL1 => SELI1,

SEL2 => SEL2,

SHIFT => SHIFT,

TDI => TDI,

-- Data register output for USER1 functions
-- Data register output for USER2 functions
-- Reset output from TAP controller

-- USER1 active output

-- USER2 active output

-- SHIFT output from TAP controller

-- TDI output from TAP controller

UPDATE => UPDATE, -- UPDATE output from TAP controller
TDO1l => TDO1,

-- Data input for USER1 function

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 15

ISE 8.2i



SXILINX® BSCAN_SPARTAN3

TDO2 => TDO2 -- Data input for USER2 function
)

-- End of BSCAN_SPARTAN3_inst instantiation

Verilog Instantiation Template

// BSCAN_SPARTAN3 : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BSCAN_SPARTAN3_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment

// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// BSCAN_SPARTAN3: Boundary Scan primitive for connecting internal logic to
// JTAG interface. Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.1i

BSCAN_SPARTAN3 BSCAN_SPARTAN3_inst (
.CAPTURE (CAPTURE), // CAPTURE output from TAP controller

.DRCK1 (DRCK1) , // Data register output for USER1 functions
.DRCK2 (DRCK2) , // Data register output for USER2 functions
.RESET (RESET) , // Reset output from TAP controller
.SEL1(SEL1), // USER1 active output

.SEL2 (SEL2) , // USER2 active output

.SHIFT (SHIFT), // SHIFT output from TAP controller
.TDI(TDI), // TDI output from TAP controller

.UPDATE (UPDATE) , // UPDATE output from TAP controller

.TDO1 (TDO1) , // Data input for USER1 function

.TDO2 (TDO2) // Data input for USER2 function

)

// End of BSCAN_SPARTAN3_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

16 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



BUFG

SUXILINX®

BUFG

Primitive: Global Clock Buffer

BUFG distributes high fan-out clock signals throughout a PLD device.

| 0 In general, the BUFG component is inferred by the synthesis tool by selecting the
highest fanout clocks in the design and appropriately inserting a BUFG until all global
X9428 clocks have been exhausted. If you desire control over BUFG insertion, this can

-- BUFG

-= VHDL

-- instance
-- declaration
-= code

-- Library
-- declaration
-= for

-- Xilinx

-- primitives

generally be done using synthesis directives. You can also instantiate a BUFG in the
case of either controlling the insertion of the buffer or in the cases of defining more
complex clocking networks using DCMs or other more advanced components. To
instantiate this component, use the instantiation template within the ISE Language
Template or use the code below and connect the BUFG to the appropriate clock source
and destinations in the design.

BUFG is a clock buffer with one clock input and one clock output.

Usage

To use a specific type of buffer, instantiate it manually. This design element is
supported for schematics and instantiation. Synthesis tools usually infer a BUFG on
any clock net. If there are more clock nets than BUFGs, the synthesis tool usually
instantiates BUFGs for the clocks that are most used. The BUFG contains both a BUFG
and an IBUFG.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (BUFG_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- BUFG: Global Clock Buffer (source by an internal signal)
-- Xilinx HDL Libraries Guide Version 8.11i

BUFG_inst
port map (
O => 0O,
I =>1I
)

BUFG

-- Clock buffer output
-- Clock buffer input

-- End of BUFG_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 17

ISE 8.2i



STXILINX® BUFG

Verilog Instantiation Template

// BUFG : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (BUFG_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// BUFG: Global Clock Buffer (source by an internal signal)
// Xilinx HDL Libraries Guide Version 8.1i

BUFG BUFG_inst (
.0(0), // Clock buffer output
LI(T) // Clock buffer input
)

// End of BUFG_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

18 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



BUFGCE

SUXILINX®

BUFGCE

Primitive: Global Clock Buffer with Clock Enable

BUFGCE is a clock buffer with one clock input, one clock output, and a clock enable

CE line. Its O output is "0" when clock enable (CE) is Low (inactive). When clock enable
| I_. | o (CE) is High, the I input is transferred to the O output.
L Inputs Outputs
BUFGCE
| CE (0]
X9384
X 0 0
I 1 I
Usage
This design element is supported for instantiations but not for inference.
VHDL Instantiation Template
BUFGCE : In order to incorporate this function into the design,
VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The
declaration : instance name (BUFGCE_inst) and/or the port declarations

code : after the "=>" assignment maybe changed to properly
: reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
: for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—---- Cut code below this line and paste into the architecture body---->
-- BUFGCE: Global Clock Buffer with Clock Enable (active high)

-= FPGA

-- Xilinx HDL Libraries Guide Version 8.11i

BUFGCE_inst : BUFGCE

port map (
0 => 0, -- Clock buffer ouptput
CE => CE, -- Clock enable input
I =>1 -- Clock buffer input

)

-- End of BUFGCE_inst instantiation

Verilog Instantiation Template

// BUFGCE : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BUFGCE_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// and outputs must be connect.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 19

ISE 8.2i



SXILINX® BUFGCE

/] <===== Cut code below this line---->

// BUFGCE: Global Clock Buffer with Clock Enable (active high)
// FPGA

// Xilinx HDL Libraries Guide Version 8.11i

BUFGCE BUFGCE_inst (

.0(0), // Clock buffer output
.CE(CE), // Clock enable input
LI(I) // Clock buffer input

)

// End of BUFGCE_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

20 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



BUFGCE_1

SUXILINX®

BUFGCE_1

Primitive: Global Clock Buffer with Clock Enable and Output
State 1
BUFGCE is a clock buffer with one clock input, one clock output, and a clock enable
CE line. Its O output is High (1) when clock enable (CE) is Low (inactive). When clock
I I:l o enable (CE) is High, the I input is transferred to the O output.
l/ Inputs Outputs
BUFGCE_1
I CE o
X9385 X 0 1
I 1 I
Usage
This design element is supported for schematics and instantiations, but not for
inference.
VHDL Instantiation Template
-- BUFGCE_1 : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (BUFGCE_1_inst) and/or the port declarations

-= code : after the

"=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- BUFGCE_1: Global Clock Buffer with Clock Enable (active low)

-- FPGA

-- Xilinx HDL Libraries Guide Version 8.11i

BUFGCE_1_inst : BUFGCE_L1l

port map (
0 => 0, -- Clock buffer ouptput
CE => CE, -- Clock enable input
I =>1 -- Clock buffer input

)

-- End of BUFGCE_1_inst instantiation

Verilog Instantiation Template

// BUFGCE_1 : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 21

ISE 8.2i




SXILINX® BUFGCE_1

// declaration : (BUFGCE_1_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <=-==== Cut code below this line---->

// BUFGCE_1: Global Clock Buffer with Clock Enable (active low)
// FPGA
// Xilinx HDL Libraries Guide Version 8.11i

BUFGCE_1 BUFGCE_1_inst (

.0(0), // Clock buffer output
.CE(CE), // Clock enable input
LI(T) // Clock buffer input

)

// End of BUFGCE_1_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

22 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



BUFGMUX

SUXILINX®

BUFGMUX

Primitive: Global Clock MUX Buffer

BUFGMU

X9251

-= BUFGMUX
-= VHDL

-- instance
-- declaration
-- code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

BUFGMUX is a multiplexed global clock buffer that can select between two input
X clocks: 10 and I1. When the select input (S) is Low, the signal on 10 is selected for
output (O). When the select input (S) is High, the signal on I1 is selected for output.

BUFGMUX and BUFGMUX_1 are distinguished by the state the output assumes
when that output switches between clocks in response to a change in input.
BUGEFMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.

Note: BUFGMUX guarantees that when S is toggled, the output remains in the inactive state
until the next active clock edge (either 10 or 1) occurs.

Inputs Outputs
10 1 S (o]
10 X 0 10
X I1 1 11
X X T 0
X X \2

Usage

This design element is supported for schematics and instantiations but not for
inference.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (BUFGMUX_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- BUFGMUX: Global Clock Buffer 2-to-1 MUX

-- FPGA
-- Xilinx HDL Libraries Guide Version 8.11
BUFGMUX_inst BUFGMUX
port map (
0 => 0, -- Clock MUX output
I0 => I0, -- ClockO input
I1 => I1, -- Clockl input
S => 8§ -- Clock select input
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 23

ISE 8.2i



SXILINX® BUFGMUX

)

-- End of BUFGMUX_inst instantiation

Verilog Instantiation Template

// BUFGMUX : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (BUFGMUX_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <=-==== Cut code below this line---->

// BUFGMUX: Global Clock Buffer 2-to-1 MUX
// FPGA
// Xilinx HDL Libraries Guide Version 8.11i

BUFGMUX BUFGMUX_inst (

.0(0), // Clock MUX output
.I0(10), // ClockO input
.I1(I1), // Clockl input

.S(8) // Clock select input

)

// End of BUFGMUX_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

24 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



BUFGMUX_1

SUXILINX®

BUFGMUX_1

Primitive: Global Clock MUX Buffer with Output State 1

BUFGMUX_1 is a multiplexed global clock buffer that can select between two input

BUFGMUX 1 clocks 10 and I1. When the select input (S) is Low, the signal on 10 is selected for

output (O). When the select input (S) is High, the signal on I1 is selected for output.

EEm— (o) BUFGMUX and BUFGMUX_1 are distinguished by the state the output assumes
1 when that output switches between clocks in response to a change in input.
S BUFGMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.
Inputs Outputs
10 1 S (0]
10 X 0 10
X 11 1 11
X X T 1
X X \2 1
Usage
This design element is supported for schematics and instantiations but not for
inference.
VHDL Instantiation Template
--  BUFGMUX_1 In order to incorporate this function into the design,
- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (BUFGMUX_1_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used

-- Copy the foll
-- Entity declar

Library UNISIM;
use UNISIM.vcompo

for simulation.

owing two statements and paste them before the
ation, unless they already exist.

nents.all;

-—— <===== Cut code below this line and paste into the architecture body---->

-— BUFGMUX_1:
-- FPGA
-- Xilinx HDL

BUFGMUX_1_inst
port map (
o => 0O,
I0 => IO,
I1 => I1,
S => S
)

Global Clock Buffer 2-to-1 MUX (inverted select)
Libraries Guide Version 8.11i
BUFGMUX_1
-- Clock MUX output
-- Clock0 input

-- Clockl input
-- Clock select input

-- End of BUFGMUX_1_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com

ISE 8.2i

25



SXILINX® BUFGMUX_1

Verilog Instantiation Template

// BUFGMUX_1 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BUFGMUX_1_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// BUFGMUX_1: Global Clock Buffer 2-to-1 MUX (inverted select)
// FPGA
// Xilinx HDL Libraries Guide Version 8.11i

BUFGMUX_1 BUFGMUX_1_inst (

.0(0), // Clock MUX output
.I0(I0), // ClockO input
.I1(I1), // Clockl input

.S(8) // Clock select input

)

// End of BUFGMUX_1_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

26 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



CAPTURE_SPARTAN3 S XILINX®

CAPTURE_SPARTANS3

Primitive: Spartan-3 Register State Capture for Bitstream Readback

CAPTURE_SPARTAN3 CAPTURE_SPARTANS3 devices provide user control over when to capture register
(flip-flop and latch) information for readback. Spartan-3E devices provide the

CAP | readback function through dedicated configuration port instructions.

CLK

The CAPTURE_SPARTANS symbol is optional. Without it, readback is still
performed, but the asynchronous capture function it provides for register states is not
available.

Spartan-3E devices allow users to capture register (flip-flop and latch) states only.

st Although LUT RAM, SRL, and block RAM states are read back, they cannot be
captured. An asserted high CAP signal indicates that the registers in the device are to
be captured at the next Low-to-High clock transition.

By default, data is captured after every trigger (transition on CLK while CAP is
asserted). To limit the readback operation to a single data capture, add the ONESHOT
attribute to CAPTURE_SPARTANS3 devices.

Usage

This design element is instantiated rather than inferred.

VHDL Instantiation Template

CAPTURE_SPARTAN3 : In order to incorporate this function into the design,

VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The
declaration : instance name (CAPTURE_SPARTAN3_inst) and/or the port declarations
code : after the "=>" assignment maybe changed to properly

connect this function to the design. Delete or comment
out inputs/outs that are not necessary.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
: for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

/7

<-—---- Cut code below this line and paste into the architecture body---->
-- CAPTURE_SPARTAN3: Register State Capture for Bitstream Readback

__ Spartan-3

-- Xilinx HDL Libraries Guide version 8.11

CAPTURE_SPARTAN3_inst : CAPTURE_SPARTAN3

port map (
CAP => CAP, -- Capture input
CLK => CLK -- Clock input

)

-- End of CAPTURE_SPARTAN3_inst instantiation

Verilog Instantiation Template

CAPTURE_SPARTAN3 : In order to incorporate this function into the design,

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 27
ISE 8.2i



SXILINX® CAPTURE_SPARTAN3

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (CAPTURE_SPARTAN3_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment

// : out inputs/outs that are not necessary.

/] <===== Cut code below this line---->

// CAPTURE_SPARTAN3: Register State Capture for Bitstream Readback
// Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11i

CAPTURE_SPARTAN3 CAPTURE_SPARTAN3_inst (
.CAP (CAP), // Capture input
.CLK (CLK) // Clock input

)

// End of CAPTURE_SPARTAN3_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

28 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



DCM_SP

SUXILINX®

DCM_SP

Primitive:

DCM
oLk ko

CLKFB CLK90

| CLK180
RST | | CLK270
| CLkeX
| CLK2X180

CLKDV
PSINCDEC | 7

PSEN
PSCLK]

[CLKFX
E(FXWO

| LOCKED

STATUS [7:0]
—

| PSDONE

X10262

Digital Clock Manager

DCM_SP is a digital clock manager that provides multiple functions. It can implement
a clock delay locked loop, a digital frequency synthesizer, digital phase shifter.

Note: All unused inputs must be driven Low, automatically tying the inputs Low if they are
unused. The DSSEN input pin for the DCM_SP is no longer recommended for use and should
remain unconnected in the design.

Clock Delay Locked Loop (DLL)

DCM_SP includes a clock delay locked loop used to minimize clock skew for Spartan-
3E devices. DCM_SP synchronizes the clock signal at the feedback clock input
(CLKEFB) to the clock signal at the input clock (CLKIN). The locked output (LOCKED)
is high when the two signals are in phase. The signals are considered to be in phase
when their rising edges are within a specified time (ps) of each other.

On-chip synchronization is achieved by connecting the CLKFB input to a point on the
global clock network driven by a BUFG, a global clock buffer. The BUFG connected to
the CLKFB input of the DCM_SP must be sourced from either the CLKO or CLK2X
outputs of the same DCM_SP. The CLKIN input should be connected to the output of
an IBUFG, with the IBUFG input connected to a pad driven by the system clock.

Off-chip synchronization is achieved by connecting the CLKFB input to the output of
an IBUFG, with the IBUFG input connected to a pad. Either the CLKO or CLK2X
output can be used but not both. The CLKO or CLK2X must be connected to the input
of OBUE, an output buffer. The CLK_FEEDBACK attribute controls whether the CLKO
output, the default, or the CLK2X output is the source of the CLKFB input.

DCM_SP Clock Delay Lock Loop Outputs

Output Description

CLKO Clock at 1x CLKIN frequency

CLK180 Clock at 1x CLKO frequency, shifted 180° with regards to CLKO
CLK270 Clock at 1x CLKO frequency, shifted 270° with regards to CLKO
CLK2X Clock at 2x CLKO frequency, in phase with CLKO

CLK2X180 Clock at 2x CLKO frequency shifted 180° with regards to CLK2X
CLK90 Clock at 1x CLKO frequency, shifted 90° with regards to CLKO

CLKDV Clock at (1/n) x CLKO frequency, where n=CLKDV_DIVIDE value.
CLKDV is in phase with CLKO.

LOCKED All enabled DCM_SP features locked.

Digital Frequency Synthesizer (DFS)

The CLKFX and CLKFX180 outputs in conjunction with the CLKFX_MULTIPLY and
CLKFX_DIVIDE attributes provide a frequency synthesizer that can be any multiple
or division of CLKIN. CLKFX and CLKIN are in phase every CLKFEX_MULTIPLY
cycles of CLKFX and every CLKFX_DIVIDE cycles of CLKIN when a feedback is
provided to the CLKFB input of the DLL. The frequency of CLKFX is defined by the
following equation.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 29

ISE 8.2i



SUXILINX®

DCM_SP

Frequencyerxrx=
(CLKFX_MULTIPLY_value/CLKFX_DIVIDE_value) * Frequencycrxiy

Both the CLKFX or CLKFX180 output can be used simultaneously.

CLKFX180 is 1x the CLKFX frequency, shifted 180° with regards to CLKFX. CLKFX
and CLKFX180 always have a 50/50 duty cycle.

The CLK_FEEDBACK attribute set to NONE causes the DCM_SP to be in the Digital
Frequency Synthesizer mode. The CLKFX and CLKFX180 are generated without
phase correction with respect to CLKIN.

The DSSEN input pin for the DCM_SP is no longer recommended for use and should
remain unconnected in the design.

Digital Phase Shifter (DPS)

The phase shift (skew) between the rising edges of CLKIN and CLKFB can be
configured as a fraction of the CLKIN period with the PHASE_SHIFT attribute. This
allows the phase shift to remain constant as ambient conditions change. The
CLKOUT_PHASE_SHIFT attribute controls the use of the PHASE_SHIFT value. By
default, the CLKOUT_PHASE_SHIFT attribute is set to NONE and the
PHASE_SHIFT attribute has no effect.

By creating skew between CLKIN and CLKFB, all DCM_SP output clocks are phase
shifted by the amount of the skew.

When the CLKOUT_PHASE_SHIFT attribute is set to FIXED, the skew set by the
PHASE_SHIFT attribute is used at configuration for the rising edges of CLKIN and
CLKFB. The skew remains constant.

When the CLKOUT_PHASE_SHIFT attribute is set to VARIABLE, the skew set at
configuration is used as a starting point and the skew value can be changed
dynamically during operation using the PS* signals. This digital phase shifter feature
is controlled by a synchronous interface. The inputs PSEN (phase shift enable) and
PSINCDEC (phase shift increment/decrement) are set up to the rising edge of PSCLK
(phase shift clock). The PSDONE (phase shift done) output is clocked with the rising
edge of PSCLK (the phase shift clock). PSDONE must be connected to implement the
complete synchronous interface. The rising-edge skew between CLKIN and CLKFB
can be dynamically adjusted after the LOCKED output goes High.

The PHASE_SHIFT attribute value specifies the initial phase shift amount when the
device is configured. Then the PHASE_SHIFT value is changed one unit when PSEN
is activated for one period of PSCLK. The PHASE_SHIFT value is incremented when
PSINCDEC is High and decremented when PSINCDEC is Low during the period that
PSEN is High. When the DCM_SP completes an increment or decrement operation,
the PSDONE output goes High for a single PSCLK cycle to indicate the operation is
complete. At this point the next change can be made. When RST (reset) is High, the
PHASE_SHIFT attribute value is reset to the skew value set at configuration.

If CLKOUT_PHASE_SHIFT is FIXED or NONE, the PSEN, PSINCDEC, and PSCLK
inputs must be tied to GND. The program automatically ties the inputs to GND if they
are not connected by the user.

30

www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



DCM_SP

SUXILINX®

FACTORY_JF Attribute

The FACTORY_JF attribute affects the DCM_SP's jitter filter characteristic. This
attribute is set the default value of C080 and should not be modified unless otherwise
instructed by Xilinx.

Additional Status Bits

The STATUS output bits return the following information.
DCM_SP Additional Status Bits

Bit Description

0 Phase Shift Overflow*

1= |PHASE_SHIFT| > 255
1 DLL CLKIN stopped**

1 = CLKIN stopped toggling

2 DLL CLKFX stopped
1 = CLKEX stopped toggling

Sloale|w
Z
o

* Phase Shift Overflow also goes high if the end of the phase shift delay line is reached
(see the product data sheet for the value of the maximum shifting delay).

** If only the DFS outputs are used (CLKFX & CLKFX180), this status bit does not go
high if CLKIN stops.

LOCKED
When LOCKED is high, all enabled signals are locked.

RST

The master reset input (RST) resets DCM_SP to its initial (power-on) state. The signal
at the RST input is asynchronous and must be held High for 2 ns.

Usage

This component is instantiated in the code as it cannot be easily inferred in synthesis
tools. Some synthesis tools can allow inference via an attribute. See your synthesis
tool documentation.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 31

ISE 8.2i



SUXILINX® DCM_SP
Available Attributes
Attribute Type Allowed Values Default Description
CLK_ String "NONE", "1X"or |"1X” Specifies clock
FEEDBACK "2X” feedback of NONE, 1X
or 2X.
CLKDV_DIVIDE |Real 15,2.0,2.5,3.0,3.5, |2.0 Specifies the extent to
4.0,45,5.0,5.5,6.0, which the DCM_SP
6.5,7.0,7.5,8.0,9.0, clock divider (CLKDV
10.0,11.0,12.0,13.0, output) is to be
14.0,15.0 or 16.0 frequency divided.
CLKFX_DIVIDE | Integer 1to 32 1 Specifies the frequency
divider value for the
CLKFX output.
CLKFX_MULTI- | Integer 1to 32 4 Specifies the frequency
PLY multiplier value for the
CLKFX output.
CLKIN_ Boolean FALSE, TRUE FALSE Enables CLKIN divide
DIVIDE_ by two features.
BY_2
CLKIN_ Real Any value (inns) |0 Specifies the input
PERIOD within the period to the DCM_SP
operating CLKIN input in ns).
frequency of the
device.
CLKOUT_ String "NONE", "FIXED" |"NONE” Specifies the phase
PHASE_ or "VARIABLE” shift of NONE, FIXED
SHIFT or VARIABLE.
DESKEW_ String "SOURCE_ "SYSTEM_ | Sets configuration bits
ADJUST SYNCHRONOUS", | SYNCHRO- | affecting the clock
"SYSTEM_ NOUs" delay alignment
SYNCHRONOUS" between the DCM_SP
or "0" to "15” output clocks and an
FPGA clock input pin.
FACTORY_JF 16-Bit Any 16-Bit x8080 The FACTORY_JF
Hexidecimal | Hexadecimal value attribute affects the
DCMs jitter filter
characteristic. This
attribute is set the
default value of FOFO
and should not be
modified unless
otherwise instructed
by Xilinx.
PHASE_SHIFT | Integer -255 to 255 0 Defines the amount of
fixed phase shift from -
255 to 255
STARTUP_ Boolean FALSE, TRUE FALSE Delays configuration
WAIT DONE until DCM_SP

LOCK.

32

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



®
DCM_SP S XILINX
VHDL Instantiation Template
-- DCM_SP : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (DCM_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-— connect this function to the design. Unused inputs
- and outputs can be removed or commented out.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- DCM_SP: Digital Clock Manager Circuit for Spartan-3E
-- Xilinx HDL Libraries Guide Version 8.11i

DCM_inst : DCM_SP
generic map (

CLKDV_DIVIDE => 2.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
-- 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

CLKFX_DIVIDE => 1, -- Can be any interger from 1 to 32

CLKFX_MULTIPLY => 4, -- Can be any Integer from 1 to 32

CLKIN_DIVIDE_BY 2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two feature

CLKIN_PERIOD => 0.0, -- Specify period of input clock

CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift of NONE, FIXED or VARIABLE

CLK_FEEDBACK => "1X", -- Specify clock feedback of NONE, 1X or 2X

DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS, SYSTEM_ SYNCHRONOUS or

- an Integer from 0 to 15

DFS_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for frequency synthesis

DLL_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for DLL

DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE

FACTORY_JF => X"C080", -- FACTORY JF Values

PHASE_SHIFT => 0, -- Amount of fixed phase shift from -255 to 255

STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM_SP LOCK, TRUE/FALSE

port map (

CLKO => CLKO, -- 0 degree DCM_SP CLK ouptput

CLK180 => CLK180, -- 180 degree DCM_SP CLK output

CLK270 => CLK270, -- 270 degree DCM_SP CLK output

CLK2X => CLK2X, -- 2X DCM_SP CLK output

CLK2X180 => CLK2X180, -- 2X, 180 degree DCM_SP CLK out

CLK90 => CLK90, -- 90 degree DCM_SP CLK output

CLKDV => CLKDV, -- Divided DCM_SP CLK out (CLKDV_DIVIDE)

CLKFX => CLKFX, -- DCM_SP CLK synthesis out (M/D)

CLKFX180 => CLKFX180, -- 180 degree CLK synthesis out

LOCKED => LOCKED, -- DCM_SP LOCK status output

PSDONE => PSDONE, -- Dynamic phase adjust done output

STATUS => STATUS, -- 8-bit DCM_SP status bits output

CLKFB => CLKFB, -—- DCM_SP clock feedback

CLKIN => CLKIN, -- Clock input (from IBUFG, BUFG or DCM_SP)

PSCLK => PSCLK, -- Dynamic phase adjust clock input

PSEN => PSEN, -- Dynamic phase adjust enable input

PSINCDEC => PSINCDEC, -- Dynamic phase adjust increment/decrement

RST => RST -- DCM_SP asynchronous reset input

)

-- End of DCM_inst instantiation

Verilog Instantiation Template

// DCM_SP : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (DCM_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Unused inputs

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 33

ISE 8.2i



STXILINX® DCM_SP
// and outputs can be removed or commented out.
/] <=-==== Cut code below this line---->
// DCM_SP: Digital Clock Manager Circuit for Spartan-3E
// Xilinx HDL Libraries Guide Version 8.11i
DCM_SP #(
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any Integer from 1 to 32
.CLKFX_MULTIPLY (4), // Can be any Integer from 2 to 32
.CLKIN_DIVIDE_BY_ 2 ("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(0.0), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK ("1X"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an Integer from 0 to 15
.DFS_FREQUENCY_MODE ("LOW") , // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE ("LOW") , // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION ("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hC080), // FACTORY JF values
.PHASE_SHIFT(O0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT ("FALSE") // Delay configuration DONE until DCM_SP LOCK, TRUE/FALSE
) DCM_inst (
.CLKO (CLKO) , // 0 degree DCM_SP CLK output
.CLK180(CLK180), // 180 degree DCM_SP CLK output
.CLK270(CLK270), // 270 degree DCM_SP CLK output
.CLK2X (CLK2X) , // 2X DCM_SP CLK output
.CLK2X180 (CLK2X180), // 2X, 180 degree DCM_SP CLK out
.CLK90 (CLK90) , // 90 degree DCM_SP CLK output
.CLKDV (CLKDV) , // Divided DCM_SP CLK out (CLKDV_DIVIDE)
.CLKFX (CLKFX) , // DCM_SP CLK synthesis out (M/D)
.CLKFX180 (CLKFX180), // 180 degree CLK synthesis out
.LOCKED (LOCKED), // DCM_SP LOCK status output
.PSDONE (PSDONE) , // Dynamic phase adjust done output
.STATUS (STATUS), // 8-bit DCM_SP status bits output
.CLKFB (CLKFB) , // DCM_SP clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM_SP)
.PSCLK (PSCLK) , // Dynamic phase adjust clock input
.PSEN (PSEN) , // Dynamic phase adjust enable input
.PSINCDEC (PSINCDEC), // Dynamic phase adjust increment/decrement
.RST (RST) // DCM_SP asynchronous reset input
)
// End of DCM_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
34 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



FDCPE

SUXILINX®

FDCPE

PRE

]

Primitive:
Clear

D Flip-Flop with Clock Enable and Asynchronous Preset and

FDCPE is a single D-type flip-flop with data (D), clock enable (CE), asynchronous
preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The
asynchronous PRE, when High, sets the Q output High; CLR, when High, resets the
output Low. Data on the D input is loaded into the flip-flop when PRE and CLR are

D FDCPE Low and CE is High on the Low-to-High clock (C) transition. When CE is Low, the
CE a  clock transitions are ignored.
c The flip-flop is asynchronously cleared, output Low, when power is applied.
CLR For Spartan-3E devices, the power-on condition can be simulated when global
set/reset (GSR) is active.
X4389
GSR defaults to active-High but can be inverted by adding an inverter in front of the
GSR input of the Spartan-3E symbol.
Inputs Outputs
CLR PRE CE D C Q
1 X X X X 0
0 1 X X X 1
0 0 0 X X No Change
0 0 1 0 T 0
0 0 1 1 T 1
Usage
This design element typically should be inferred in the design code; however, the
element can be instantiated for cases where strict placement control, relative
placement control, or initialization attributes need to be applied.
Available Attributes
. Allowed i
Attribute Type Values Default Description
INIT 1-Bit 1-Bit Binary 1'b0 Sets the initial value of
Binary Q output after
configuration
VHDL Instantiation Template
-— FDCPE : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (FDCPE_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly
-- : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.
-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com 35



STXILINX® FDCPE

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
-- Clock Enable (posedge clk). All families.
-- Xilinx HDL Libraries Guide version 8.11

FDCPE_inst : FDCPE
generic map (
INIT => '0') -- Initial value of register ('0' or '1l'")

port map (
Q => Q, -- Data output
c => C, -- Clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous clear input
D => D, -- Data input
PRE => PRE -- Asynchronous set input

)

-- End of FDCPE_inst instantiation

Verilog Instantiation Template

// FDCPE : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (FDCPE_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
// Clock Enable (posedge clk). All families.
// Xilinx HDL Libraries Guide Version 8.1i

FDCPE # (
JINIT(1'b0) // Initial value of register (1'b0 or 1'bl)
) FDCPE_inst (

.Q(Q), // Data output

.Cc(C), // Clock input

.CE(CE), // Clock enable input
.CLR(CLR), // Asynchronous clear input
.D(D), // Data input

.PRE (PRE) // Asynchronous set input

)

// End of FDCPE_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

36 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



FDRSE

SUXILINX®

FDRSE

!

Primitive: D Flip-Flop with Synchronous Reset and Set and Clock

Enable

IR
m

FDRSE

B

)

X3732

FDRSE is a single D-type flip-flop with synchronous reset (R), synchronous set (S),
and clock enable (CE) inputs and data output (Q). The reset (R) input, when High,
overrides all other inputs and resets the Q output Low during the Low-to-High clock
transition. (Reset has precedence over Set.) When the set (S) input is High and R is
Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition.
Data on the D input is loaded into the flip-flop when R and S are Low and CE is High
during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, by default, when power is
applied or when GSR is active.

Inputs Outputs
R G CE D c Q
1 X X X ) 0
0 1 X X T 1
0 0 0 X X No Change
0 0 1 1 T 1
0 0 1 0 T 0

Usage

This design element typically should be inferred in the design code; however, the
element can be instantiated for cases where strict placement control, relative
placement control, or initialization attributes need to be applied.

Available Attributes

. Allowed _—
Attribute Type Default Description
Values
INIT Binary 0,1 0 Sets the initial value of
Q output after
configuration and on
GSR
VHDL Instantiation Template

-— FDRSE : In order to incorporate this function into the design,

-- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (FDCRS_inst) and/or the port declarations

- code : after the "=>" assignment maybe changed to properly

-— : connect this function to the design. Delete or comment

-= : out inputs/outs that are not necessary.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be

-- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used

-- : for simulation.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 37

ISE 8.2i



SUXILINX®

FDRSE

Copy the following two statements and paste them before the

Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—---- Cut code below this line and paste into the architecture body---->

-- FDRSE: Single Data Rate D Flip-Flop with Synchronous Clear,

-— Clock Enable (posedge clk). All families.
-- Xilinx HDL Libraries Guide version 8.11

FDRSE_inst FDRSE
generic map (

INIT => '0') -- Initial value of register ('0' or '1l'")
port map (

Q => Q, -- Data output

c => C, -- Clock input

CE => CE, -- Clock enable input

D => D, -- Data input

R => R, -- Synchronous reset input

S => S -- Synchronous set input

)

-- End of FDRSE_inst instantiation

Verilog Instantiation Template

Set and

FDRSE In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration (FDCRS_inst) and/or the port declarations within the
code parenthesis maybe changed to properly reference and
connect this function to the design. Delete or comment
out inputs/outs that are not necessary.
<----- Cut code below this line---->

// FDRSE: Single Data Rate D Flip-Flop with Synchronous Clear,

// Clock Enable (posedge clk). All families.
// Xilinx HDL Libraries Guide Version 8.11i

FDRSE # (

JINIT(1'b0) // Initial value of register (1'b0 or 1'bl)

) FDRSE_inst (

.Q(Q), // Data output

.Cc(C), // Clock input

.CE(CE), // Clock enable input
.D(D), // Data input

.R(R), // Synchronous reset input
S(S) // Synchronous set input

)

// End of FDRSE_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

Set and

38

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



IBUF S XILINX®

IBUF
Primitive: Single-Ended Input Buffer with Selectable I/O Standard

Input Buffers are necessary to isolate the internal circuit from the signals coming into
IBUF the FPGA. IBUFs are contained in input/output blocks (IOB). IBUFs allow the
specification of the particular I/O Standard to configure the I/O. In general, an IBUF

| | > 0 should be used for all single-ended data input or bidirectional pins.

Inputs (I) | Outputs (O)
X9442 0/L 0
1/H 1
U/X/Z X
Usage

IBUFs are automatically inserted (inferred) to any signal directly connected to a top
level input or inout port of the design by the synthesis tool. It is generally
recommended to allow the synthesis tool to infer this buffer however if so desired, the
IBUF can be instantiated into the design. In order to do so, connect the input port, I, of
the component directly to the associated top-level input or in-out port and connect the
output port, O, to the FPGA logic to be sourced by that port. Modify any necessary
generic maps (VHDL) or named parameter value assignment (Verilog) in order to
change the default behavior of the component.

Available Attribute

Attribute Type Allowed Values Default Description

IOSTANDARD String "DEFAULT "DEFAULT” | Use to assign an
1/0 standard to an
I/0 primitive.
IBUF_DELAY_ Integer 0to16 0 Specifies the
VALUE amount of
additional delay to
add to the non-
registered path out
of the IOB.

IFD_DELAY_ String "AUTO"or0to 8 "AUTO” Specifies the
VALUE amount of
additional delay to
add to the
registered path
within the IOB.

Note: Consult the device user guide or databook for the allowed values and the default value.

VHDL Instantiation Templates

-- IBUF : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-— instance : in the architecture body of the design code. The

- declaration : instance name (IBUF_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

- : connect this function to the design. Delete or comment
-- : out inputs/outs that are not necessary.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 39
ISE 8.2i



SUXILINX®

IBUF

- Library
-- declaration
-= for

-- Xilinx

-- primitives

In addition to adding the instance declaration, a use

statement for the UNISIM.vcomponents library needs to be

added before the entity declaration.
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

This library

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- IBUF: Single-ended Input Buffer

-- All devices

-- Xilinx HDL Libraries Guide version 8.11

IBUF_inst : IBUF

generic map

IOSTANDARD => "DEFAULT")

port map (
o => 0O,
I =>T1I

)

-- End of IBUF_inst instantiation

// IBUF

// Verilog

// instance

/7 declaration

// code

//

//

/] <===== Cut code below this line---->

// IBUF: Single-ended Input Buffer

-- Buffer output

-- Buffer input

(connect directly to top-level port)

Verilog Instantiation Templates

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(IBUF_inst) and/or the port declarations within the

parenthesis maybe changed to properly reference and
connect this function to the design.
out inputs/outs that are not necessary.

// All devices

// Xilinx HDL Libraries Guide 8.11i

IBUF #(

. IOSTANDARD ( "DEFAULT")

) IBUF_inst (
.0(0),
LI(I)

)

// End of IBUF_inst instantiation

// Buffer output
// Buffer input

// Specify the input I/O standard

For More Information

Consult the Spartan-3E Data Sheet.

Delete or comment

(connect directly to top-level port)

40

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



IBUFDS S XILINX®

IBUFDS
Primitive: Differential Signaling Input Buffer with Selectable I/O Interface

IBUFDS is an input buffer that supports low-voltage, differential signaling. In

T (O IBUFDS, a design level interface signal is represented as two distinct ports (I and IB),
one deemed the "master” and the other the "slave." The master and the slave are
opposite phases of the same logical signal (for example, MYNET and MYNETB).

X9255
Inputs Outputs
1 1B o
0 0 No Change
0 1 0
1 0 1
1 1 No Change
Usage
This design element is supported for instantiation but not for inference.
Available Attributes
. Allowed .
Attribute Type Default Description
Values
DIFF_TERM Boolean FALSE, TRUE |FALSE Enables the built-in
differential termination
resistor.
IOSTANDARD String "DEFAULT” "DEFAULT” | Use to assign an I/O
standard to an I/O
primitive.
VHDL Instantiation Template
-- IBUFDS : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (IBUFDS_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used
-- : for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.
Library UNISIM;
use UNISIM.vcomponents.all;
-—  <==——- Cut code below this line and paste into the architecture body---->
-- IBUFDS: Differential Input Buffer
-- FPGA
-- Xilinx HDL Libraries Guide Version 8.11i
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 11

ISE 8.2i



SXILINX® IBUFDS

IBUFDS_inst : IBUFDS
generic map (
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E
only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8"
(Spartan-3E only)
TIOSTANDARD => "DEFAULT")

port map (
O => 0, -- Clock buffer output
I => I, -- Diff_p clock buffer input (connect directly to top-level port)
IB => IB -- Diff_n clock buffer input (connect directly to top-level port)

)

-- End of IBUFDS_inst instantiation

Verilog Instantiation Template

// IBUFDS : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (IBUFDS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <=-==== Cut code below this line---->

// IBUFDS: Differential Input Buffer
// FPGA
// Xilinx HDL Libraries Guide Version 8.11i

IBUFDS # (
.DIFF_TERM ("FALSE") // Differential Termination
.IBUF_DELAY_VALUE("0"), // Specify the amount of added input delay for the buffer, "0"-"16" (Spartan-
3E only)
.IFD_DELAY_VALUE ("AUTO"), // Specify the amount of added delay for input register, "AUTO", "O"-"8"
(Spartan-3E .IOSTANDARD ( "DEFAULT") // Specify the input I/O standard
) IBUFDS_inst (
.0(0), // Clock buffer output
LI(I), // Diff_p clock buffer input (connect directly to top-level port)

.IB(IB) // Diff_n clock buffer input (connect directly to top-level port)
)

// End of IBUFDS_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

42 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



IBUFG

SUXILINX®

IBUFG

Primitive: Dedicated Input Buffer with Selectable 1/O Interface

IBUFG is dedicated to input buffers and is used for connecting to the clock buffer
BUFG or DCM_SP. You can attach an IOSTANDARD attribute to an IBUFG instance.

I )
The IBUFG input can only be driven by the global clock pins. The IBUFG output can
drive CLKIN of a DCM_SP, BUFG, or user logic. IBUFG can be routed to user logic

IBUFG

-= IBUFG
-= VHDL
-- instance

-- code

- Library

-= for
-- Xilinx

and does not have to be routed to a DCM_SP.

Attach an IOSTANDARD attribute to an IBUFG and assign the value indicated in the
"IOSTANDARD (Attribute Value)" column to program the input for the I/O standard
associated with that value.

X10181

Usage

This design element is supported for schematic and instantiation. Synthesis tools
usually infer a BUFGP on any clock net. If there are more clock nets than BUFGPs, the
synthesis tool usually instantiates BUFGPs for the clocks that are most used. The
BUFGP contains both a BUFG and an IBUFG.

Available Attributes

Attribute Type Allowed Values Default Description
IOSTANDARD | String "DEFAULT” "DEFAULT” | Use to assign an1/0
standard to an I/O
primitive.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code. The

-- declaration :

instance name (IBUFG_inst) and/or the port declarations

: after the "=>" assignment maybe changed to properly
: reference and connect this function to the design.
: All inputs and outputs must be connected.

: In addition to adding the instance declaration, a use
-- declaration :

statement for the UNISIM.vcomponents library needs to be

: added before the entity declaration. This library
: contains the component declarations for all Xilinx
-- primitives :
: for simulation.

primitives and points to the models that are used

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- IBUFG: Single-ended global clock input buffer
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.11i

IBUFG_inst : IBUFG
generic map
IBUF_DELAY_VALUE => "Q", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E
only)
IOSTANDARD => "DEFAULT")
port map (
O => 0, -- Clock buffer output
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 43

ISE 8.2i



SXILINX® IBUFG

I => I -- Clock buffer input (connect directly to top-level port)
)

-- End of IBUFG_inst instantiation

Verilog Instantiation Template

// IBUFG : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (IBUFG_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connect.
/] <=-==== Cut code below this line---->
// IBUFG: Global Clock Buffer (sourced by an external pin)
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11
IBUFG # (
.IOSTANDARD ( "DEFAULT")
) IBUFG_inst (
.0(0), // Clock buffer output
.I(I) // Clock buffer input (connect directly to top-level port)
)
// End of IBUFG_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
44 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



IBUFGDS

SUXILINX®

IBUFGDS

Primitive: Dedicated Differential Signaling Input Buffer with Selectable

I/O Interface

IBUFGDS is a dedicated differential signaling input buffer for connection to the clock

[o) buffer (BUFG) or DCM_SP. In IBUFGDS, a design-level interface signal is represented

IB as two distinct ports (I and IB), one deemed the "master” and the other the "slave." The
master and the slave are opposite phases of the same logical signal (for example,
MYNET and MYNETB).
X9255
Inputs Outputs
| 1B (0]
0 0 No Change
0 1 0
1 0 1
1 1 No Change
Usage
This design element is supported for instantiation, but not for inference.
Available Attributes
. Allowed .
Attribute Type Values Default Description
DIFF_TERM Boolean FALSE, TRUE | FALSE Enables the built-in
differential termination
resistor.
IOSTANDARD String "DEFAULT” "DEFAULT” |Use to assign an I/O
standard toan I/0O
primitive.
VHDL Instantiation Template
-— IBUFGDS : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (IBUFGDS_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <===== Cut code below this line and paste into the architecture body---->

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

45




SXILINX® IBUFGDS

-- IBUFGDS: Differential Global Clock Input Buffer
-- FPGA
-- Xilinx HDL Libraries Guide Version 8.11i

IBUFGDS_inst : IBUFGDS
generic map (

DIFF_TERM => "FALSE", -- Differential Termination
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E
only)
IOSTANDARD => "DEFAULT")
port map (
O => 0, -- Clock buffer output
I => I, -- Diff_p clock buffer input (connect directly to top-level port)
IB => IB -- Diff_n clock buffer input (connect directly to top-level port)
)
-- End of IBUFGDS_inst instantiation
Verilog Instantiation Template
// IBUFGDS : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (IBUFGDS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// : and outputs must be connect.
/] <===== Cut code below this line---->

// IBUFGDS: Differential Global Clock Buffer (sourced by an external pin)
// FPGA
// Xilinx HDL Libraries Guide Version 8.11i

IBUFGDS # (
.DIFF_TERM("FALSE"),
.IOSTANDARD ( "DEFAULT")
) IBUFGDS_inst (
.0(0), // Clock buffer output
.I(I), // Diff_p clock buffer input
.IB(IB) // Diff_n clock buffer input
)

// End of IBUFGDS_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

46 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



IDDR2 S XILINX®

IDDR2

Primitive: Double Data Rate Input D Flip-Flop with Optional Data
Alignment, Clock Enable and Programmable Synchronous or
Asynchronous Set/Reset

The IDDR? is an input double data rate (DDR) register useful in capturing double

data-rate signals entering the FPGA. The IDDR2 requires two clocks to be connected

to the component, CO and C1, so that data is captured at the positive edge of both CO

o and C1 clocks. The IDDR?2 features an active high clock enable port, CE, which can be

T used to suspend the operation of the registers and both set and reset ports that can be

- configured to be synchronous or asynchronous to the respective clocks. The IDDR2
has an optional alignment feature, which allows both output data ports to the
component to be aligned to a single clock.

D IDDR2

co Qo

Usage

The IDDR2 must be instantiated to be incorporated into a design. To change the
default behavior of the IDDR?2, attributes can be modified via the generic map
(VHDL) or named parameter value assignment (Verilog) as a part of the instantiated
component. The IDDR2 can be either connected directly to a top-level input port in
the design where an appropriate input buffer can be inferred or to an instantiated
IBUF, IOBUE, IBUFDS or IOBUFDS. All inputs and outputs of this component should
either be connected or properly tied off.

Available Attributes

. Allowed i
Attribute Type Default Description
Values
DDR_ALIGN- String "NONE", "NONE” | Sets output alignment.
MENT "C0" or "C1”
INIT_QO Integer Oorl 0 Sets initial state of the Q0
output to
Oorl.
INIT_Q1 Integer Oorl 0 Sets initial state of the Q1
output to
Oorl.
SRTYPE String "SYNC" or "SYNC” Specifies "SYNC" or "ASYNC"
"ASYNC” set/reset.
VHDL Instantiation Template
-- IDDR2 : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-— instance : in the architecture body of the design code. The
- declaration : instance name (IDDR2_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly
-— : connect this function to the design. All inputs
- : and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used
-- : for simulation.
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 47

ISE 8.2i



SXILINX® IDDR2

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <= Cut code below this line and paste into the architecture body---->
-- IDDR2: Input Double Data Rate Input Register with Set, Reset
- and Clock Enable. Spartan-3E

-- Xilinx HDL Libraries Guide version 8.11

IDDR2_inst : IDDR2
generic map (

DDR_ALIGNMENT => "NONE", -- Sets output alignment to "NONE", "CO", "C1"
INIT Q0 => '0', -- Sets initial state of the Q0 output to '0' or '1'
INIT Q1 => '0', -- Sets initial state of the Q1 output to '0' or '1'
SRTYPE => "SYNC") -- Specifies "SYNC" or "ASYNC" set/reset
port map (
Q0 => Q0, -- 1-bit output captured with CO0 clock
Q1 => Q1, -- 1-bit output captured with Cl clock
C0 => CO0, -- 1-bit clock input
Cl => Cl, -- 1-bit clock input
CE => CE, -- 1l-bit clock enable input
D => D, -- 1-bit data input
R => R, -- 1-bit reset input
S => 8§ -- 1-bit set input
)
-- End of IDDR2_inst instantiation
Verilog Instantiation Templae
// IDDR2 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (IDDR2_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->
// IDDR2: Input Double Data Rate Input Register with Set, Reset
// and Clock Enable. Spartan-3E
// Xilinx HDL Libraries Guide Version 8.1i
IDDR2 # (
.DDR_ALIGNMENT ("NONE"), // Sets output alignment to "NONE", "CO" or "C1"

INIT_Q0(1'b0), // Sets initial state of the Q0 output to 1'b0 or 1'bl
INIT_Q1(1'b0), // Sets initial state of the Q1 output to 1'b0 or 1'bl
.SRTYPE ("SYNC") // Specifies "SYNC" or "ASYNC" set/reset

) IDDR2_inst (
.00(Q0), // 1-bit output captured with CO0 clock
.01(Q1l), // 1-bit output captured with Cl clock
.C0(C0), // 1-bit clock input

.C1(Cl), // 1-bit clock input

.CE(CE), // 1-bit clock enable input

.D(D), // 1-bit DDR data input
.R(R), // 1-bit reset input
.S (9) // 1-bit set input

)

// End of IDDR2_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

48 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



IOBUF

SUXILINX®

IOBUF

Primitive: bidirectional Buffer with Selectable I/O Interface

-= TOBUF
-= VHDL
-- instance

-- declaration :
: after the "=>" assignment maybe changed to properly

: connect this function to the design. Delete or comment
: out inputs/outs that are not necessary.

-- code

- Library

-- declaration :
: added before the entity declaration. This library
: contains the component declarations for all Xilinx
-- primitives :
: for simulation.

-= for
-- Xilinx

For Spartan-3E, IOBUF is a bidirectional buffer whose I/O interface corresponds to an

I/0 standard. You can attach an IOSTANDARD attribute to an IOBUF instance.
IOBUF components that use the LVTTL, LVCMOS15, LVCMOS18, LVCMOS25,

10 LVCMOS33 signaling standards have selectable capacitance drive and slew rates
using the capacitance DRIVE and SLEW constraints.
IOBUFs are composites of IBUF and OBUFT elements. The O output is X (unknown)
X8406 when I/0O (input/output) is Z. IOBUFs can be implemented as interconnections of

their component elements.

Inputs Bidirectional Outputs
T | 10 (0]
1 X Z X
0 1 1 1
0 0 0 0
Usage

These design elements are instantiated and inferred.

Available Attributes

Attribute Type Allowed Values Default Description
IOSTANDARD String "DEFAULT” "DEFAULT” | Use to assignan1/0
standard to an I/O
primitive.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code. The

instance name (IOBUF_inst) and/or the port declarations

: In addition to adding the instance declaration, a use

statement for the UNISIM.vcomponents library needs to be

primitives and points to the models that are used

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- IOBUF: Single-ended bidirectional Buffer
-- All devices

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com

ISE 8.2i

49




SXILINX® IOBUF

-- Xilinx HDL Libraries Guide version 8.11

IOBUF_inst : IOBUF
generic map (
DRIVE => 12,
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E
only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8"
(Spartan-3E only)
TIOSTANDARD => "DEFAULT",
SLEW => "SLOW")

port map (
0 => 0, -- Buffer output
I0 => IO, -- Buffer inout port (connect directly to top-level port)
I =>T1, -- Buffer input
T => T -- 3-state enable input

)

-- End of IOBUF_inst instantiation

Verilog Instantiation Template

// IOBUF : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (IOBUF_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// IOBUF: Single-ended bidirectional Buffer
// All devices
// Xilinx HDL Libraries Guide Version 8.1i

IOBUF # (
.DRIVE(12), // Specify the output drive strength
.IBUF_DELAY_VALUE("0"), // Specify the amount of added input delay for the buffer, "0"-"16" (Spartan-
3E only)
.IFD_DELAY_VALUE ("AUTO"), // Specify the amount of added delay for input register, "AUTO", "0"-"8"
(Spartan-3E only)
.IOSTANDARD ( "DEFAULT"), // Specify the I/O standard

.SLEW("SLOW") // Specify the output slew rate
) IOBUF_inst (

.0(0), // Buffer output

.I0(I10), // Buffer inout port (connect directly to top-level port)
LI(I), // Buffer input

LT(T) // 3-state enable input

)

// End of IOBUF_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

50 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



IOBUFDS

SUXILINX®

IOBUFDS

Primitive: 3-State Differential Signaling I/O Buffer with Active Low

Output Enable

IOBUFDS is a single 3-state, differential signaling input/output buffer with active

T Low output enable.
| 10 Inputs Bidirectional Outputs
10B
0 0 | T 10 0B o
< 5 1 Z - =
0 0 0 1 0
X9827
1 0 1 0
* The dash (-) means No Change.
Usage
This design element is instantiated rather than inferred.
Available Attibutes
. Allowed -
Attribute Type Values Default Description
DRIVE Integer 2,4,6,8,12, 12 Selects output drive
16, 24 strength (mA) for the
SelectlO buffers that use
the LVTTL, LVCMOSI12,
LVCMOS15, LVCMOS18,
LVCMOS25, or LVCMOS33
interface I/O standard.
IOSTANDARD String "DEFAULT” |"DEFAULT” |Use to assignanl/O
standard to an I/O
primitive.
SLEW String "SLOW" or "SLOW” Sets the output rise and fall
"FAST” time.

VHDL Instantiation Template

-— IOBUFDS : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (IOBUFDS_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly

-- : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used

: for simulation.

Copy the following two statements and paste them before the

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com 51



SXILINX® IOBUFDS

-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- IOBUFDS: Differential bidirectional Buffer
-- FPGA
-- Xilinx HDL Libraries Guide version 8.11

TIOBUFDS_inst : IOBUFDS
generic map (
IBUF_DELAY_VALUE => "Q", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E
only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8"
(Spartan-3E only)
TOSTANDARD => "DEFAULT")

port map (
0 => 0, -- Buffer output
I0 => IO, -- Diff_p inout (connect directly to top-level port)
IOB => IOB, -- Diff n inout (connect directly to top-level port)
I =>T1, -- Buffer input
T => T -- 3-state enable input

)

-- End of IOBUFDS_inst instantiation

Verilog Instantiation Template

// IOBUFDS : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (IOBUFDS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <===== Cut code below this line---->

// IOBUFDS: Differential bidirectional Buffer
// FPGA
// Xilinx HDL Libraries Guide Version 8.11i

IOBUFDS # (
.IBUF_DELAY_VALUE("0"), // Specify the amount of added input delay for the buffer, "0"-"16" (Spartan-
3E only)
.IFD_DELAY_VALUE ("AUTO"), // Specify the amount of added delay for input register, "AUTO", "O"-"8"
(Spartan-3E only)
.IOSTANDARD ( "DEFAULT") // Specify the I/O0 standard
) IOBUFDS_inst (
.0(0), // Buffer output
.I0(10), // Diff_p inout (connect directly to top-level port)
.IOB(IOB), // Diff_n inout (connect directly to top-level port)
LI(I), // Buffer input
.T(T) // 3-state enable input

)

// End of IOBUFDS_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

52 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



KEEPER S XILINX®

KEEPER
Primitive: KEEPER Symbol

KEEPER is a weak keeper element used to retain the value of the net connected to its
bidirectional O pin. For example, if a logic 1 is being driven onto the net, KEEPER
drives a weak /resistive 1 onto the net. If the net driver is then 3-stated, KEEPER
continues to drive a weak/resistive 1 onto the net.

Usage
o This design element is instantiated rather than inferred.
X8718 .
VHDL Instantiation Template
-- KEEPER : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (KEEPER_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly
-— : connect this function to the design. Delete or comment
-- : out inputs/outs that are not necessary.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->
-—- KEEPER: I/0O Buffer Weak Keeper
-= All FPGA
-- Xilinx HDL Libraries Guide version 8.11
KEEPER_inst : KEEPER
port map (
0O => 0 -- Keeper output (connect directly to top-level port)
)

-- End of KEEPER_inst instantiation

Verilog Instantiation Template

// KEEPER : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (KEEPER_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <===== Cut code below this line---->

// KEEPER: I/O Buffer Weak Keeper
// All FPGA
// Xilinx HDL Libraries Guide Version 8.11

KEEPER KEEPER_inst (
.0(0), // Keeper output (connect directly to top-level port)
)

// End of KEEPER_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 53
ISE 8.2i



SXILINX® KEEPER

For More Information
Consult the Spartan-3E Data Sheet.

54 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



LDCPE

SUXILINX®

LDCPE

PRE

Primitive: Transparent Data Latch with Asynchronous Clear and Preset
and Gate Enable

PR
m

L

LDCPE
| Q
CLR
X8371

-- LDCPE: Transparent latch with with Asynchronous Reset,
All families.

Gate Enable.

LDCPE is a transparent data latch with data (D), asynchronous clear (CLR),
asynchronous preset (PRE), and gate enable (GE). When CLR is High, it overrides the
other inputs and resets the data (Q) output Low. When PRE is High and CLR is Low, it
presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input
and gate enable (GE) are High and CLR and PRE are Low. The data on the D input
during the High-to-Low gate transition is stored in the latch. The data on the Q output

remains unchanged as long as G or GE remains Low.

The latch is asynchronously cleared, output Low, when power is applied, or when
global reset is active.

For Spartan-3E devices, power-on conditions are simulated when global set/reset

(GSR) is active.

GSR defaults to active-High but can be inverted by adding an inverter in front of the
GSR input of the Spartan-3E symbol.

Inputs

Outputs

CLR

PRE

GE

Q

0

1

No Change

0

1

No Change

[elNeolNeolNolNolNel

o|lo|lo|lo|o| | X

X
X
0
1
1
1
1

—|o|r P XX XD

Tl X|~|o|X|X|X| O

D

Usage

This design element typically should be inferred in the design code; however, the
element can be instantiated for cases where strict placement control, relative
placement control, or initialization attributes need to be applied.

Available Attributes

. Allowed i
Attribute Type Values Default Description
INIT 1-Bit lor0 Sets the initial value of

Q output after
configuration

VHDL Instantiation Template

-- Xilinx HDL Libraries Guide version 8.11i

Preset and

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

55



SXILINX® LDCPE

LDCPE_inst : LDCPE
generic map (

INIT => '0') -- Initial value of the latch
port map (

Q => Q, -- Data output

CLR => CLR, -- Asynchronous clear/reset input

D => D, -- Data input

G => G, -- Gate input

GE => GE, -- Gate enable input

-- End of LDCPE_inst instantiation

Verilog Instantiation Template

// LDCPE : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LDCPE_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// LDCPE: Transparent latch with with Asynchronous Reset, Preset and
// Gate Enable. All families.
// Xilinx HDL Libraries Guide Version 8.1i

LDCPE # (
LINIT(1'b0) // Initial value of latch (1'bO or 1'bl)
) LDCPE_inst (

.Q(Q), // Data output

.CLR(CLR) , // Asynchronous clear/reset input
.D(D), // Data input

.G(G), // Gate input

.GE (GE) , // Gate enable input

.PRE (PRE) // Asynchronous preset/set input

)i

// End of LDCPE_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

56 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



LUT1,2,3,4

SUXILINX®

LUT1,2,3,4
Primitive: 1-, 2-, 3-, 4-Bit Look-Up-Table with General Output

LUT1

lo

X9852

LUT2

o

X8379

LUT3

o

X8382

LUT4

o

X8385

LUT1, LUT2, LUT3, and LUT4 are, respectively, 1-, 2-, 3-, and 4-bit look-up-tables
(LUTs) with general output (O).

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

LUT1 provides a look-up-table version of a buffer or inverter.

LUTs are the basic Spartan-3E building blocks. Two LUTs are available in each CLB
slice; four LUTs are available in each CLB. The variants, “LUT1_D, LUT2_D, LUT3_D,
LUT4_D”and “LUT1_L, LUT2_L, LUT3_L, LUT4_L"”provide additional types of
outputs that can be used by different timing models for more accurate pre-layout
timing estimation.

LUTS3 Function Table

Inputs Outputs

12 1 10 (o]

INIT[O

INIT[1

INIT[3
INIT[4
INIT[5]
INIT[6]

1
]
INIT[2]
1
|

o M el i e B e I B e
= OO =R |=R|O| O
Ol = | O =R | OO

1 1 1 INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

Usage

LUTs are inferred with the logic portions of the HDL code. Xilinx suggests that you
instantiate LUTs only if you have a need to implicitly specify the logic mapping, or if
you need to manually place or relationally place the logic.

Available Attributes
LUT1

Attribute Type Allowed Values Default Description

INIT 2-Bit 2-Bit Hexadecimal 2'h0 Initializes ROMs,
Hexadeci RAMs, registers, and
mal look-up tables.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 57

ISE 8.2i



SXILINX® LUT1, 2, 3, 4
LUT2
Attribute Type Allowed Values Default Description
INIT 4-Bit 4-Bit Hexadecimal 4'h0 Initializes ROMs,
Hexadeci RAMs, registers, and
mal look-up tables.
LUT3
Attribute Type Allowed Values Default Description
INIT 8-Bit 8-Bit Hexadecimal 8'h00 Initializes ROMs,
Hexadeci RAMs, registers, and
mal look-up tables.
LUT4
Attribute Type Allowed Values Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 Initializes ROMs,
Hexadeci RAM, registers, and
mal look-up tables.
VHDL Instantiation Template for LUT1
-- LUT1 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (LUT1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used
-- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.
Library UNISIM;
use UNISIM.vcomponents.all;
-—  <==——- Cut code below this line and paste into the architecture body---->

-- LUT1:

l-input Look-Up Table with general output

-- Xilinx HDL Libraries Guide Version 8.11i

LUT1_inst

INIT =>
port map (

o => 0O,

I0 => IO
)

LUT1
generic map (
||00||)

-- LUT general output
-- LUT input

-- End of LUT1_inst instantiation

// LUT1

// Verilog
// instance
// declaration

Verilog Instantiation Template For LUT1

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(LUT1_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and

// connect this function to the design. All inputs

// and outputs must be connected.

58 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



LUT1,2,3,4

SUXILINX®

<----- Cut code below this line---->

// LUT1l: l-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

LUT1 #(

.INIT(2'b00) // Specify LUT Contents
) LUT1_inst (

.0(0), // LUT general output

.I0O(I0) // LUT input
)

// End of LUT1_inst instantiation

VHDL Instantiation Template for LUT2

LUT2 : In order to incorporate this function into the design,

VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The

declaration : instance name (LUT2_inst) and/or the port declarations

code : after the "=>" assignment maybe changed to properly
: reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- LUT2: 2-input Look-Up Table with general output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT2_inst : LUT2
generic map (
INIT => X"0")

port map (
0 => 0, -- LUT general output
I0 => I0, -- LUT input
I1 => I1 -- LUT input

)

-- End of LUT2_inst instantiation

Verilog Instantiation Template for LUT2

// LUT2 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (LUT2_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// LUT2: 2-input Look-Up Table with general output
/7 For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i
LUT2 #(
.INIT(4'h0) // Specify LUT Contents
) LUT2_inst (
.0(0), // LUT general output
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 59

ISE 8.2i



SXILINX® LUT1, 2, 3, 4

.I0(I0), // LUT input
.I1(I1) // LUT input
)

// End of LUT2_inst instantiation

VHDL Instantiation Template for LUT3

-— LUT3 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (LUT3_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- LUT3: 3-input Look-Up Table with general output
-- Xilinx HDL Libraries Guide Version 8.11

LUT3_inst : LUT3
generic map (
INIT => X"00")

port map (
0 => 0, -- LUT general output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2 -- LUT input

)

-- End of LUT3_inst instantiation

Verilog Instantiation Template For LUT3

// LUT3 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LUT3_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// LUT3: 3-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT3 #(

.INIT(8'h00) // Specify LUT Contents
) LUT3_inst (

.0(0), // LUT general output

.I0(I0), // LUT input

I1(I1), // LUT input

.I2(I2) // LUT input
)

// End of LUT3_inst instantiation

60 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



®
LUT1,2,3, 4 SUXILINX
VHDL Instantiation Template for LUT4
-- LUT4 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (LUT4_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- LUT4: 4-input Look-Up Table with general output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT4_inst : LUT4
generic map (
INIT => X"0000")

port map (
0 => 0, -- LUT general output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2, -- LUT input
I3 => I3 -- LUT input

)

-- End of LUT4_inst instantiation

Verilog Instantiation Template For LUT4

// LUT4 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LUT4_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// LUT4: 4-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT4 #(

LINIT(16'h0000) // Specify LUT Contents
) LUT4_inst (

.0(0), // LUT general output

I0(I0), // LUT input

I1(I1), // LUT input

.I2(I2), // LUT input

.I3(I3) // LUT input

)i

// End of LUT4_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

61



SXILINX® LUT1, 2, 3, 4

62 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



LUT1_L, LUT2_L, LUT3_L, LUT4_L S XILINX®

LUT1 L, LUT2 L, LUT3 L, LUT4 L
Primitive: 1-, 2-, 3-, 4-Bit Look-Up-Table with Local Output

LUT1_L, LUT2_L, LUT3_L, and LUT4_L are, respectively, 1-, 2-, 3-, and 4- bit look-up-
LUT1 L |0 tables (LUTs) with a local output (LO) that connects to another output within the
same CLB slice and to the fast-connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

X8378

LUT1_L provides a look-up-table version of a buffer or inverter.

a o2 ] See also “LUT1L, 2, 3,4”and “LUT1_D, LUT2_D, LUT3_D, LUT4_D”
LUT3_L Function Table
10
Inputs Outputs
X8381
12 | 10 LO
2 | LUT3L |, o 0 0 0 INIT[0]
" 0 0 1 INIT[1]
10 0 1 0 INIT[2]
0 1 1 INIT[3]
X83s4 1 0 0 INIT[4]
1 0 1 INIT[5]
13| LUT4_L
12| 1 1 0 INIT[6]
" LO
o] 1 1 1 INIT[7]
o INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute
Usage
LUTs are inferred with the logic portions of the HDL code. Xilinx suggests that you
instantiate LUTs only if you have a need to implicitly specify the logic mapping, or if
you need to manually place or relationally place the logic.
Available Attributes
LUT1_L
Attribute Type Allowed Values Default Description
INIT 2-Bit 2-Bit Hexadecimal 2'h0 Initializes ROMs, RAMs,
Hexadeci registers, and look-up
mal tables.
LUT2_L
Attribute Type Allowed Values Default Description
INIT 4-Bit 4-Bit Hexadecimal 4'h0 Initializes ROMs,
Hexadeci RAMs, registers, and
mal look-up tables.
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 69

ISE 8.2i



SUXILINX®

LUTT_L, LUT2_L, LUT3_L, LUT4_L

Library UNISIM;

LUT1_L
VHDL
instance
declaration
code

Library
declaration
for
Xilinx
primitives

LUT3_L
Attribute Type Allowed Values Default Description
INIT 8-Bit 8-Bit Hexadecimal |8h00 Initializes ROMs, RAMs,
Hexadeci registers, and look-up tables.
mal
LUT4_L
Attribute Type Allowed Values Default Description
INIT 16-Bit 16-Bit Hexadecimal | 16'h0000 Initializes ROMs, RAMs,
Hexadeci registers, and look-up
mal tables.

VHDL Instantiation Template for LUT1_L

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (LUT1_L_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- LUT1_L:

l-input Look-Up Table with local output

-- Xilinx HDL Libraries Guide Version 8.11i

LUT1_L_inst

generic map (
I|OOI|)

INIT =>
port map (

LO => LO,

I0 => IO
)

LUT1_L

-- LUT local output
-- LUT input

-- End of LUT1_IL_inst instantiation

Verilog Instantiation Template For LUT1_L

// LUT1_L In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (LUT1_L_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->

// LUT1_L: l-input Look-Up Table with local output

// For use with all FPGAs.

// Xilinx HDL Libraries Guide Version 8.11i

LUT1_L #(

.INIT(2'b00) // Specify LUT Contents

) LUT1_L_inst (

70 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



LUT1_L, LUT2_L, LUT3_L, LUT4_L

SUXILINX®

.LO(LO), // LUT local output
.I0(I0) // LUT input
)

// End of LUT1_L_inst instantiation

VHDL Instantiation Template for LUT2_L

-- LUT2_L : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (LUT2_L_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- LUT2_L: 2-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT2_L_inst : LUT2_L
generic map (
INIT => X"0")

port map (
LO => LO, -- LUT local output
I0 => I0, -- LUT input
I1 => I1 -- LUT input

)

-- End of LUT2_L_inst instantiation

Verilog Instantiation Template For LUT2_L

// LUT2_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LUT2_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// LUT2_L: 2-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT2_L #(
.INIT(4'h0) // Specify LUT Contents
) LUT2_L_inst (
LO(LO), // LUT local output
.I0(I0), // LUT input
I1(I1) // LUT input
)

// End of LUT2_L_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

71



SXILINX® LUT1_L, LUT2_L, LUT3_L, LUT4_L

VHDL Instantiation Template for LUT3_L

-- LUT3_L : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (LUT3_L_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- LUT3_L: 3-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT3_L_inst : LUT3_L
generic map (
INIT => X"00")

port map (
LO => LO, -- LUT local output
I0 => IO, -- LUT input
I1 => I1, -- LUT input
I2 => I2 -- LUT input

)

-- End of LUT3_IL_inst instantiation

Verilog Instantiation Template For LUT3_L

// LUT3_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LUT3_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// LUT3_L: 3-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

LUT3_L #(
.INIT(8'h00) // Specify LUT Contents
) LUT3_L_inst (

LO(LO), // LUT local output
.I0(10), // LUT input
I1(I1), // LUT input
I2(I2) // LUT input

)

// End of LUT3_L_inst instantiation

VHDL Instantiation Template for LUT4_L

-- LUT4_L : In order to incorporate this function into the design,

- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (LUT4_L_inst) and/or the port declarations

-— code : after the "=>" assignment maybe changed to properly

72 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



LUT1_L, LUT2_L, LUT3_L, LUT4_L

SUXILINX®

-- Library
-- declaration
-= for

-- Xilinx

-- primitives

reference and connect this function to the design.
All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <===== Cut code below this line and paste into the architecture body---->

-- LUT4_L: 4-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT4_L_inst
generic map

LUT4_L

INIT => X"0000")

port map (
LO => LO,
I0 => IO,
Il => I1,
I2 => I2,
I3 => I3

)

- LUT local output
- LUT input
- LUT input
- LUT input
- LUT input

-- End of LUT4_I_inst instantiation

// LUT4_L

// Verilog
// instance
// declaration

Verilog Instantiation Template For LUT4_L

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(LUT4_L_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <===== Cut code below this line---->

// LUT4_L: 4-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

LUT4_L #(

.INIT(16'h0000) // Specify LUT Contents

) LUT4_IL_inst

LO(LO),

I0(I0),
LI1(11),

I2(12),

I3(I3)
)i

(

// LUT local output
LUT input

LUT input

LUT input

LUT input

// End of LUT4_L_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

73



SXILINX® LUT1_L, LUT2_L, LUT3_L, LUT4_L

74 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



LUT1_D, LUT2_D, LUT3_D, LUT4_D

SUXILINX®

LUT1_D, LUT2_D, LUT3_D, LUT4_D

Primitive: 1-, 2-, 3-, 4-Bit Look-Up-Table with Dual Output

LUT1D |0

X8377

1 | wr2o |

S
lo

X8380

iz | LUt D |0

S
lo

X8383

3 | LUT4_D

X8386

oI5
o |0

LUT1_D, LUT2_D, LUT3_D, and LUT4_D are, respectively, 1-, 2-, 3-, and 4-bit look-
up-tables (LUTs) with two functionally identical outputs, O and LO. The O output is a
general interconnect. The LO output is connects to another output within the same
CLB slice and to the fast connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

LUT1_D provides a look-up-table version of a buffer or inverter.

See also “LUT1, 2,3,4”and”“LUT1_L, LUT2_L, LUT3_L, LUT4_L”
LUT3_D Function Table

Inputs Outputs

12 [} 10 (o) LO

0 0 0 INIT[0] INITI[O0]
0 0 1 INIT[1] INIT[1]
0 1 0 INIT[2] INIT[2]
0 1 1 INIT[3] INIT[3]
1 0 0 INIT[4] INIT[4]
1 0 1 INIT[5] INIT[5]
1 1 0 INIT[6] INIT[6]
1 1 1 INIT[7] INIT[7]

INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

Usage

LUTs are inferred with the logic portions of the HDL code. Xilinx suggests that you
instantiate LUTs only if you have a need to implicitly specify the logic mapping, or if
you need to manually place or relationally place the logic.

Available Attributes

LUT1_D
Attribute Type Allowed Values Default Description
INIT 2-Bit 2-Bit Hexadecimal 2'h0 Initializes ROMs,
Hexadeci RAMs, registers, and
mal look-up tables.
LUT2_D
Attribute Type Allowed Values Default Description
INIT 4-Bit 4-Bit Hexadecimal 4'h0 Initializes ROMs,
Hexadeci RAMs, registers, and
mal look-up tables.
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 63

ISE 8.2i




SUXILINX®

LUT1_D, LUT2_D, LUT3_D, LUT4_D

LUT3_D
Attribute Type Allowed Values Default Description
INIT 8-Bit 8-Bit Hexadecimal 8'h00 Initializes ROMs, RAMs,
Hexadeci registers, and look-up
mal tables.
LUT4_D
Attribute Type Allowed Values Default Description
INIT 16-Bit 16-Bit Hexadecimal | 16'h0000 Initializes ROMs, RAMs,
Hexadeci registers, and look-up
mal tables.

VHDL Instantiation Template for LUT1_D

LUT1_D : In order to incorporate this function into the design,
VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The
declaration : instance name (LUT1_D_inst) and/or the port declarations

code : after the "=>" assignment maybe changed to properly
: reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- LUT1_D: l-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

LUT1_D_inst : LUT1_D
generic map (
INIT => "00")

port map (
LO => LO, -- LUT local output
0O => 0, -- LUT general output
I0 => I0 -- LUT input

)

-- End of LUT1_D_inst instantiation

Verilog Instantiation Template For LUT1_D

// LUT1_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (LUT1_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->

// LUT1_D: l-input Look-Up Table with general and local outputs

// For use with all FPGAs.

// Xilinx HDL Libraries Guide Version 8.11i

LUT1_D #(

.INIT(2'b00) // Specify LUT Contents

64 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



LUT1_D, LUT2_D, LUT3_D, LUT4_D

SUXILINX®

) LUT1_D_inst (

.LO(

.0 (0

LI0(
)

// End

LUT2_.

VHDL
instan

LO), // LUT local output
) // LUT general output
I0) // LUT input

of LUT1_D_inst instantiation

VHDL Instantiation Template for LUT2_D

D : In order to incorporate this function into the design,
: the following instance declaration needs to be placed
ce : in the architecture body of the design code. The

-- declaration : instance name (LUT2_D_inst) and/or the port declarations

code

Libra

after the "=>" assignment maybe changed to properly
reference and connect this function to the design.
All inputs and outputs must be connected.

ry : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be

for
Xilin:
primit

Copy t

added before the entity declaration. This library
X : contains the component declarations for all Xilinx
ives : primitives and points to the models that are used
for simulation.

he following two statements and paste them before the

Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

//
//
/7
//
//
/7
//

/7

-- LUT2
-- Xili

LUT2_D_

generic
INIT
port ma
LO =
O =>
I0 =
I1 =
) ;

-- End

LUT2_.

Veril
instan
declara
code

// LUT2
/7
// Xili

LUT2_D
.INI
) LUT2_
.LO(
.0 (0
LI0(
LI1(
) ;

// End

Cut code below this line and paste into the architecture body---->

_D: 2-input Look-Up Table with general and local outputs
nx HDL Libraries Guide Version 8.11i

inst : LUT2_D

map (

=> X"0")
p (

> LO, -- LUT local output
o, -- LUT general output
> I0, -- LUT input

> I1 -- LUT input

of LUT2_D_inst instantiation

Verilog Instantiation Template For LUT2_D

D : In order to incorporate this function into the design,
og : the following instance declaration needs to be placed
ce : in the body of the design code. The instance name
tion : (LUT2_D_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and
connect this function to the design. All inputs
and outputs must be connected.

Cut code below this line---->

_D: 2-input Look-Up Table with general and local outputs

For use with all FPGAs.
nx HDL Libraries Guide Version 8.11

#(

T(4'h0) // Specify LUT Contents
D_inst (

LO), // LUT local output

), // LUT general output

I0), // LUT input

I1) // LUT input

of LUT2_I._inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

65



SUXILINX®

LUT1_D, LUT2_D, LUT3_D, LUT4_D

-= LUT3_D

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

VHDL Instantiation Template for LUT3_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (LUT3_D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- LUT3_D:

3-input Look-Up Table with general and local outputs

-- Xilinx HDL Libraries Guide Version 8.11i

LUT3_D_inst

generic map (

LUT3_D

INIT => X"00")

port map (
LO => LO,
o => 0O,
I0 => IO,
I1 => I1,
I2 => I2

)

local output
-- LUT general output
-- LUT input

-- LUT input

-- LUT input

-- End of LUT3_D_inst instantiation

// LUT3_D
// Verilog
// instance
// declaration

Verillog Instantiation Template for LUT3_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(LUT3_D_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// LUT3_D: 3-input Look-Up Table with general and local outputs
// For use with all FPGAs.

// Xilinx HDL Libraries Guide Version 8.11i

LUT3_D #(

.INIT(8'h00)
) LUT3_D_inst

.LO(LO),
.0(0),
.I0(10),
I1(1I1),
.I2(12)
)

// Specify LUT Contents
(

// LUT local output
// LUT general output

// LUT input
// LUT input
// LUT input

// End of LUT3_D_inst instantiation

-= LUT4_D

-= VHDL

-- instance
-- declaration
-- code

VHDL Instantiation Template for LUT4_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (LUT4_D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly

66

www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



LUT1_D, LUT2_D, LUT3_D, LUT4_D

SUXILINX®

reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
: for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—---- Cut code below this line and paste into the architecture body---->

-- LUT4_D: 4-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

LUT4_D_inst : LUT4_D
generic map (
INIT => X"0000")

port map (
LO => LO, -- LUT local output
0 => 0, -- LUT general output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2, -- LUT input
I3 => I3 -- LUT input

)

-- End of LUT4_D_inst instantiation

Verilog Instantiation Template For LUT4_D

LUT4_D : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name
declaration : (LUT4_D_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.
<--—-=-- Cut code below this line---->

// LUT4_D: 4-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.1i

LUT4_D #(

LINIT(16'h0000) // Specify LUT Contents
) LUT4_D_inst (

.LO(LO), // LUT local output

.0(0), // LUT general output

.I0(I0), // LUT input

I1(I1), // LUT input

.I2(I2), // LUT input

I3(I3) // LUT input
)

// End of LUT4_D_inst instantiation
For More Information

Consult the Spartan-3E Data Sheet.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

67



SXILINX® LUT1_D, LUT2_D, LUT3_D, LUT4_D

68 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MULT_AND

SUXILINX®

MULT_AND

Primitive: Fast Multiplier AND
MULT_AND is a logical AND gate component that can be used to reduce logic and
improve speed when the user is building soft multipliers within the device fabric. It
H can also be used in some carry-chain operations to reduce the needed LUTs to
LO implement some functions. The I1 and 10 inputs must betconnected to the I1 and I0
[0 — inputs of the associated LUT. The LO output must be connected to the DI input of the
associated MUXCY, MUXCY_D, or MUXCY_L.
X8405
Inputs Output
| 10 LO
0 0 0
0 1 0
1 0 0
1 1 1
[ ]
LO MUXCY_L
S/ 0 1
DI| [ci
LUT4
B1 13
Al R 12
BO W " o LI o Sum1
A0 B 10 q»———————iz—izz:> -
XORCY
o
10
MULT_AND
com
X8733
Example Multiplier Using MULT_AND
Usage
This design element can be instantiated and inferred.
VHDL Instantiation Template
--  MULT_AND In order to incorporate this function into the design,
- VHDL the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (MULT_AND_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used

for simulation.

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

75



STXILINX® MULT_AND
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.
Library UNISIM;
use UNISIM.vcomponents.all;
-— <==——- Cut code below this line and paste into the architecture body---->
-- MULT_AND: 2-input AND gate connected to Carry chain
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.11i
MULT_AND_inst : MULT_AND
port map (
LO => LO, -- MULT_AND output (connect to MUXCY DI)
I0 => IO, -- MULT_AND data[0] input
Il => TI1 -- MULT_AND data[l] input
)
-- End of MULT_AND_inst instantiation
Verilog Instantiation Template
// MULT_AND : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (MULT_AND_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// : and outputs must be connected.
/] <=-==== Cut code below this line---->
// MULT_AND: 2-input AND gate connected to Carry chain
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i
MULT_AND MULT_AND_inst (
.LO(LO), // MULT_AND output (connect to MUXCY DI)
.I0(10), // MULT_AND datal[0] input
LI1(11) // MULT_AND datal[l] input
)
// End of MULT_AND_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
76 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



MULT18X18SIO

SUXILINX®

MULT18X18SIO

Primitive: 18x18 Cascadable Signed Multiplier with Optional Input and
Output registers, Clock Enable, and Synchronous Reset

Aqzo) | MULTIeXissio |

170)

CEA
CEB
CEP
CLK
RSTA
RSTB
RSTP.

BCIN(17:0)
—

P(35:0)
—

-- MULT18X18SIO :
: the following instance declaration needs to be placed

: in the architecture body of the design code. The

: instance name (MULT18X18SIO_inst) and/or the port declarations
: after the "=>" assignment maybe changed to properly

: reference and connect this function to the design.

: All inputs and outputs must be connected.

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration :
-= for

-- Xilinx
-- primitives :

The MULT18X18SIO is a 36-bit output, 18x18-bit input dedicated signed multiplier.
This component can perform asynchronous multiplication operations when the
attributes AREG, BREG and PREG are all set to 0. Alternatively, synchronous
multiplication operations of different latency and performance characteristics can be
performed when any combination of those attributes is set to 1. When using the
multiplier in synchronous operation, the MULT18X18SIO features active high clock
enables for each set of register banks in the multiplier, CEA, CEB and CEP, as well as

=t synchronous resets, RSTA, RSTB, and RSTP. Multiple MULT18X18SIOs can be

cascaded to create larger multiplication functions using the BCIN and BCOUT ports
in combination with the B_INPUT attribute.

Usage

The MULT18X18SIO can be inferred by most synthesis tools using standard VHDL or
Verilog notation for multiplication. Alternatively, Core Generator™ System and other
IP can also create multiplication functions using this component. If preferred, the
MULT18X18SIO can be instantiated into the VHDL or Verilog code to give full control
over the implementation of the component. To change the default behavior of the
MULT18X18SIO, attributes can be modified via the generic map (VHDL) or named
parameter value assignment (Verilog) as a part of the instantiated component.

Available Attributes

. Allowed __—

Attribute Type Values Default Description

AREG Integer lor0 1 Enable the input registers on the A port
(1=on, 0=off).

B_INPUT | String "DIRECT" or |"DIREC |B input from B(17:0) (DIRECT) or from

"CASCADE” |T” BCIN (17:0) (CASCADE).

BREG Integer lor0 1 Enable the input registers on the B port
(1=on, 0=off).

PREG Integer lor0 1 Enable the output registers on the P
port (1=on, 0=off).

VHDL Instantiation Template

In order to incorporate this function into the design,

: In addition to adding the instance declaration, a use

statement for the UNISIM.vcomponents library needs to be

: added before the entity declaration. This library
: contains the component declarations for all Xilinx

primitives and points to the models that are used

: for simulation.

-- Copy the following two statements and paste them before the

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 77

ISE 8.2i



SXILINX® MULT18X18SIO

Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

/7
/7
//
/7
/7

/7
/7

<———=-- Cut code below this line and paste into the architecture body---->

-- MULT18X18SIO: 18 x 18 cascadable, signed synchronous/asynchronous multiplier
- Spartan-3E
-- Xilinx HDL Libraries Guide version 8.11

MULT18X18SIO_inst : MULT18X18SIO
generic map (

AREG => 1, -- Enable the input registers on the A port (l=on, 0=o0ff)

BREG => 1, -- Enable the input registers on the B port (l=on, 0=o0ff)

B_INPUT => "DIRECT", -- B cascade input "DIRECT" or "CASCADE"

PREG => 1) -- Enable the input registers on the P port (l=on, 0=off)
port map (

BCOUT => BCOUT, -- 18-bit cascade output

P => P, -- 36-bit multiplier output

A => A, -- 18-bit multiplier input

B => B, -- 18-bit multiplier input

BCIN => BCIN, -- 18-bit cascade input

CEA => CEA, -- Clock enable input for the A port

CEB => CEB, -- Clock enable input for the B port

CEP => CEP, -- Clock enable input for the P port

CLK => CLK, -- Clock input

RSTA => RSTA, -- Synchronous reset input for the A port

RSTB => RSTB, -- Synchronous reset input for the B port

RSTP => RSTP, -- Synchronous reset input for the P port

)

-- End of MULT18X18SIO_inst instantiation

Verilog Instantiation Template

MULT18X18SIO : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name

declaration : (MULT18X18SIO_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.

<----- Cut code below this line---->

// MULT18X18SIO: 18 x 18 cascadable, signed synchronous/asynchronous multiplier
// Spartan-3E
// Xilinx HDL Libraries Guide Version 8.11i

MULT18X18SIO # (
.AREG(1l), // Enable the input registers on the A port (l=on, 0=o0ff)
.BREG(1), // Enable the input registers on the B port (l=on, 0=o0ff)
.B_INPUT("DIRECT"), // B cascade input "DIRECT" or "CASCADE"
.PREG(1) // Enable the input registers on the P port (l=on, 0=o0ff)
) MULT18X18SIO_inst (
.BCOUT (BCOUT), // 18-bit cascade output

.P(P), // 36-bit multiplier output
.A (A7), // 18-bit multiplier input
.B(B), // 18-bit multiplier input

.BCIN(BCIN), // 18-bit cascade input

.CEA(CEA), // Clock enable input for the A port

.CEB(CEB), // Clock enable input for the B port

.CEP(CEP), // Clock enable input for the P port

.CLK(CLK), // Clock input

.RSTA(RSTA), // Synchronous reset input for the A port

.RSTB(RSTB), // Synchronous reset input for the B port

.RSTP(RSTP) // Synchronous reset input for the P port
)

// End of MULT18X18SIO_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

78

www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXCY S XILINX®

MUXCY
Primitive: 2-to-1 Multiplexer for Carry Logic with General Output

MUXCY implements a 1-bit high-speed carry propagate function. One such function

o can be implemented per logic cell (LC), for a total of 8 bits per configurable logic block
CLB) for Spartan-3E.
S _/muxcy (CLB) for Sp
o 1 The direct input (DI) of a slice is connected to the DI input of the MUXCY. The carry in
[ (CI) input of an LC is connected to the CI input of the MUXCY. The select input (S) of
DI CI the MUXCY is driven by the output of the lookup table (LUT) and configured as a
X8728 MUX function. The carry out (O) of the MUXCY reflects the state of the selected input
and implements the carry out function of each LC. When Low, S selects DI; when set
to High, S selects CI.
The variants, “"MUXCY_D”and “MUXCY_L"provide additional types of outputs that
can be used by different timing models for more accurate pre-layout timing
estimation.
Inputs Outputs
S DI Cl o
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
This design element can be instantiated and inferred.
VHDL Instantiation Template
-- MUXCY : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (MUXCY_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- MUXCY: Carry-Chain MUX with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXCY_inst : MUXCY

port map (
o => 0, -- Carry output signal
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 79

ISE 8.2i



SXILINX® MUXCY

CI => CI, -- Carry input signal
DI => DI, -- Data input signal
S => 8§ -- MUX select, tie to 'l' or LUT4 out

)

-- End of MUXCY_inst instantiation

Verilog Instantiation Template

// MUXCY : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXCY_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs and
// : and outputs of this primtive should be connected.

/] <===== Cut code below this line---->

// MUXCY: Carry-Chain MUX with general output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXCY MUXCY_inst (

.0(0), // Carry output signal

.CI(CI), // Carry input signal

.DI(DI), // Data input signal

.S(S) // MUX select, tie to 'l' or LUT4 out
)

// End of MUXCY_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

80 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXCY_|

D

SUXILINX®

MUXCY_D

S MUXCY_D

Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output

LOO

MUXCY_D implements a 1-bit high-speed carry propagate function. One such
function can be implemented per logic cell (LC), for a total of 4 bits per configurable
logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the
MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the

0 1 . . .
] MUXCY_D. The select input (S) of the MUX is driven by the output of the lookup
DI CI table (LUT) and configured as an XOR function. The carry out (O and LO) of the
MUXCY_D reflects the state of the selected input and implements the carry out
X8729 function of each LC. When Low, S selects DI; when High, S selects CI.
Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO outputs connect to other inputs within the same slice.
See also “MUXCY”and “MUXCY_L”
Inputs Outputs
S DI Cl (0] LO
0 1 X 1 1
0 0 X 0 0
1 X 1 1 1
1 X 0 0 0
Usage
This design element can only be instantiated. Synthesis tools use the MUXCY
primitive, then MAP uses the MUXCY_D.
VHDL Instantiation Template
-- MUXCY_D : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (MUXCY_D_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used

: for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-Cut code below this line and paste into the architecture body---->

-- MUXCY_D: Carry-Chain MUX with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

MUXCY_D_inst : MUXCY_D
port map (
LO => LO, -- Carry local output signal
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 81

ISE 8.2i



SUXILINX®

MUXCY_D

0 => 0, -- Carry general output signal

CI => CI, -- Carry input signal

DI => DI, -- Data input signal

S => 8 -- MUX select, tie to 'l' or LUT4 out

)

-- End of MUXCY_D_inst instantiation

Verilog Instantiation Template

// MUXCY_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (MUXCY_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <-==== Cut code below this line---->
// MUXCY_D: Carry-Chain MUX with general and local outputs
/7 For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i
MUXCY_D MUXCY_D_inst (
.LO(LO), // Carry local output signal
.0(0), // Carry general output signal
.CI(CI), // Carry input signal
.DI(DI), // Data input signal
.S(S) // MUX select, tie to 'l' or LUT4 out
)
// End of MUXCY_D_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
82 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



MUXCY_L

SUXILINX®

MUXCY_L

Primitive: 2-to-1 Multiplexer for Carry Logic with Local Output

MUXCY_L implements a 1-bit high-speed carry propagate function. One such

LO function can be implemented per slice, for a total of 4 bits per configurable logic block
s (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_L.
M(L)JXC;(_L The carry in (CI) input of an LC is connected to the CI input of the MUXCY_L. The
T select input (S) of the MUXCY_L is driven by the output of the lookup table (LUT)
and configured as an XOR function. The carry out (LO) of the MUXCY_L reflects the
DI Ci state of the selected input and implements the carry out function of each slice. When
X8730 Low, S selects DI; when High, S selects CL
See also “MUXCY”and “MUXCY_D”
Inputs Outputs
S ]| Cl LO
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
This design element can only be instantiated. Synthesis tools use the MUXCY
primitive, then MAP uses the MUXCY_L.
VHDL Instantiation Template
-- MUXCY_L In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration : instance name (MUXCY_L_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used

-- Copy the fol

for simulation.

lowing two statements and paste them before the

-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- MUXCY_L: Carry-Chain MUX with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXCY_L_inst : MUXCY_L

port map (
LO => LO, -- Carry local output signal
CI => CI, -- Carry input signal
DI => DI, -- Data input signal
S => S -- MUX select, tie to 'l' or LUT4 out

)

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 83

ISE 8.2i



SXILINX® MUXCY_L

-- End of MUXCY_L_inst instantiation

Verilog Instantiation Template

// MUXCY_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXCY_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// MUXCY_L: Carry-Chain MUX with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i

MUXCY_L MUXCY_L_inst (

.LO(LO), // Carry local output signal

.CI(CI), // Carry input signal

.DI(DI), // Data input signal

.S (8S) // MUX select, tie to 'l' or LUT4 out
)

// End of MUXCY_L_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

84 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF5

SUXILINX®

MUXF5

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

(7}

-= MUXF5

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

MUXEF5 provides a multiplexer function in a CLB slice for creating a function-of-5
lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables.
The local outputs (LO) from the two lookup tables are connected to the I0 and I1
inputs of the MUXEF5. The S input is driven from any internal net. When Low, S selects

o 10. When High, S selects I1.
The variants, “MUXF5_D"”and “MUXF5_L", provide additional types of outputs that
X8431 can be used by different timing models for more accurate pre-layout timing
estimation.
Inputs Outputs

S 10 1 o

0 1 X 1

0 0 X 0

1 X 1 1

1 X 0 0
Usage

This design element can be instantiated and inferred.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (MUXF5_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- MUXF5: Slice MUX to tie two LUT4's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF5_inst

port map (
o => 0O,
I0 => IO,
I1 => I1,
S => S

)

MUXF5

-- Output of MUX to general routing

-- Input (tie directly to the output of LUT4)
-- Input (tie directoy to the output of LUT4)
-- Input select to MUX

-- End of MUXF5_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 85

ISE 8.2i



SUXILINX®

MUXF5

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Template

MUXF5 In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration (MUXF5_inst) and/or the port declarations within the
code parenthesis maybe changed to properly reference and
connect this function to the design. All inputs
and outputs must be connected.
<----- Cut code below this line---->
// MUXF5: Slice MUX to tie two LUT4's together with general output
// For use with All FPGAs

// Xilinx HDL Libraries Guide Version 8.11i

MUXF5 MUXF5_inst (

.0(0), // Output of MUX to general routing

.I0(I0), // Input (tie directly to the output of LUT4)
.I1(1I1), // Input (tie directoy to the output of LUT4)
.S(8) // Input select to MUX

)

// End of MUXF5_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

86

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF5_D

SUXILINX®

MUXF5_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

£

MUXF5_D provides a multiplexer function in a CLB slice for creating a function-of-5
lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables.

inputs of the MUXEF5. The S input is driven from any internal net. When Low, S selects
10. When High, S selects I1.

LO The local outputs (LO) from the two lookup tables are connected to the I0 and I1
0

Outputs O and LO are functionally identical. The O output is a general interconnect.

X8432 The LO output is used to connect to other inputs within the same CLB slice.
See also “MUXF5”and “MUXF5_L”
Inputs Outputs
S 10 1 o LO
0 1 X 1 1
0 0 X 0 0
1 X 1 1 1
1 X 0 0 0
Usage

-= MUXF5_D
-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

This design element can only be instantiated. Synthesis tools use the MUXF5, then
MAP uses the MUXF5_D.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (MUXF5_D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- MUXF5_D: Slice MUX to tie two LUT4's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF5_D_inst MUXF5_D

port map (
LO => LO, -- Ouptut of MUX to local routing
o => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie directly to the output of LUT4)
I1 => I1, -- Input (tie directoy to the output of LUT4)
S => S -- Input select to MUX

)

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 87

ISE 8.2i



SXILINX® MUXF5_D

-- End of MUXF5_D_inst instantiation

Verilog Instantiation Template

// MUXF5_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF5_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// MUXF5_D: Slice MUX to tie two LUT4's together with general and local outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i

MUXF5_D MUXF5_D_inst (

.LO(LO), // Ouptut of MUX to local routing

.0(0), // Output of MUX to general routing

.I0(I0), // Input (tie directly to the output of LUT4)
.I1(1I1), // Input (tie directoy to the output of LUT4)
.S(8) // Input select to MUX

)

// End of MUXF5_D_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

88 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF5_L

SUXILINX®

MUXF5_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

’ ‘:: ‘ES

-= MUXF5_L
-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

LO

X8433

In

the
in

ins
aft
ref
All

In

sta
add
con

MUXF5_L provides a multiplexer function in a CLB slice for creating a function-of-5
lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables.

The local outputs (LO) from the two lookup tables are connected to the I0 and I1

inputs of the MUXEF5. The S input is driven from any internal net. When Low, S selects

10. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

See also “MUXF5”and “MUXF5_D”.
Inputs Output
S 10 1 LO
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0

Usage

This design element can only be instantiated. Synthesis tools use the MUXF5
primitive, then MAP uses the MUXF5_L.

VHDL Instantiation Template

order to incorporate this function into the design,
following instance declaration needs to be placed
the architecture body of the design code. The
tance name (MUXF5_I_inst) and/or the port declarations
er the "=>" assignment maybe changed to properly
erence and connect this function to the design.
inputs and outputs must be connected.

addition to adding the instance declaration, a use
tement for the UNISIM.vcomponents library needs to be
ed before the entity declaration. This library

tains the component declarations for all Xilinx

primitives and points to the models that are used

for

simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- MUXF5_L:

Slice

MUX to tie two LUT4's together with local output

-- Xilinx HDL Libraries Guide Version 8.11i

MUXF5_L_inst : MU

port map (
LO => LO,
I0 => IO,
Il => I1,
S => S

)

XF5_L

Output of MUX to local routing

Input (tie directly to the output of LUT4)
Input (tie directoy to the output of LUT4)
Input select to MUX

-- End of MUXF5_IL_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com

ISE 8.2i

89



SXILINX® MUXF5_L

Verilog Instantiation Template

// MUXF5_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF5_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF5_L: Slice MUX to tie two LUT4's together with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

MUXF5_L MUXF5_L_inst (

.LO(LO), // Output of MUX to local routing

.I0(I0), // Input (tie directly to the output of LUT4)
.I1(1I1), // Input (tie directoy to the output of LUT4)
.S(8) // Input select to MUX

)

// End of MUXF5_L_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

90 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF6

SUXILINX®

MUXF6

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

MUXEF6 provides a multiplexer function in one half of a Spartan-3E CLB (two slices)
for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with
the associated four lookup tables and two MUXEFE5s. The local outputs (LO) from the
two MUXEF5s in the CLB are connected to the 10 and I1 inputs of the MUXF6. The S
input is driven from any internal net. When Low, S selects 10. When High, S selects I1.

X8434 The variants, “"MUXF6_D” and “MUXF6_L", provide additional types of outputs that

can be used by different timing models for more accurate pre-layout timing

estimation.
Inputs Outputs

S 10 1 (o)

0 1 X 1

0 0 X 0

1 X 1 1

1 X 0 0
Usage

This design element can only be instantiated.

VHDL Instantiation Template

-— MUXF6 In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The

-- declaration instance name (MUXF6_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly

-- reference and connect this function to the design.

- All inputs and outputs must be connected.

-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library

-- Xilinx contains the component declarations for all Xilinx

-- primitives primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <===== Cut code below this line and paste into the architecture body---->

-- MUXF6: CLB MUX to tie two MUXF5's together with general output
-- Xilinx HDL Libraries Guide Version 8.11

MUXF6_inst : MUXF6

port map (
0 => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF5 LO out)
I1 => I1, -- Input (tie to MUXF5 LO out)
S => 8 -- Input select to MUX

)

-- End of MUXF6_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

91



SUXILINX®

MUXF6

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Template

MUXF6 In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name

declaration (MUXF6_inst) and/or the port declarations within the
code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.

<----- Cut code below this line---->

// MUXF6: CLB MUX to tie two MUXF5's together with general output

// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

MUXF6 MUXF6_inst (

.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF5 LO out)
.I1(1I1), // Input (tie to MUXF5 LO out)

.S(8) // Input select to MUX

)

// End of MUXF6_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

92

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF6_D

SUXILINX®

MUXF6_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXF6_D provides a multiplexer function in two slices for creating a function-of-6
lookup table or an 8-to-1 multiplexer in combination with the associated four lookup

!1___.~.“- LO .
tables and two MUXEF5s. The local outputs (LO) from the two MUXF5s in the CLB are
o connected to the I0 and I1 inputs of the MUXF6. The S input is driven from any
§ — internal net. When Low, S selects 10. When High, S selects I1.
S - Outputs O and LO are functionally identical. The O output is a general interconnect.
X8435 The LO output is used to connect to other inputs within the same CLB slice.
See also “MUXF6”and “MUXF6_L"”
Inputs Outputs
S 10 I (0] LO
0 1 X 1 1
0 0 X 0 0
1 X 1 1 1
1 X 0 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
-- MUXF6_D In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF6_D_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used
-- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.
Library UNISIM;
use UNISIM.vcomponents.all;
-—  <==——- Cut code below this line and paste into the architecture body---->
-- MUXF6_D: CLB MUX to tie two MUXF5's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i
MUXF6_D_inst MUXF6_D
port map (
LO => LO, -- Ouptut of MUX to local routing
0 => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF5 LO out)
I1 => 1I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX
)i
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 93

ISE 8.

2i




SXILINX® MUXF6_D

-- End of MUXF6_D_inst instantiation

Verilog Instantiation Template

// MUXF6_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF6_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// MUXF6_D: CLB MUX to tie two MUXF5's together with general and local outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

MUXF6_D MUXF6_D_inst (

.LO(LO), // Ouptut of MUX to local routing
.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF5 LO out)
LI1(11), // Input (tie to MUXF5 LO out)

.S(8) // Input select to MUX

)

// End of MUXF6_D_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

94 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF6_L

SUXILINX®

MUXF6_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

10

T

-= MUXF6_L
-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

MUXEF6_L provides a multiplexer function in half of a Spartan-3E CLB (two slices) for
creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the

LO associated four lookup tables and two MUXFb5s. The local outputs (LO) from the two
MUXF5s in the CLB are connected to the 10 and I1 inputs of the MUXF6. The S input is
driven from any internal net. When Low;, S selects 10. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

X8436 See also “MUXF6”and “MUXF6_D"”.

Inputs Output
S 10 1 LO
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0

Usage

This design element can only be instantiated.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (MUXF6_L_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx

: primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- MUXF6_L: CLB MUX to tie two MUXF5's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF6_L_inst

port map (
LO => LO,
I0 => IO,
I1 => I1,
S => S

)

MUXF6_L

-- Output of MUX to local routing
-- Input (tie to MUXF5 LO out)

-- Input (tie to MUXF5 LO out)

-- Input select to MUX

-- End of MUXF6_IL_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 95

ISE 8.2i



SXILINX® MUXF6_L

Verilog Instantiation Template

// MUXF6_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF6_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF6_L: CLB MUX to tie two MUXF5's together with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

MUXF6_L MUXF6_L_inst (

.LO(LO), // Output of MUX to local routing
.I0(10), // Input (tie to MUXF5 LO out)
.I1(1I1), // Input (tie to MUXF5 LO out)
.S(8) // Input select to MUX

)

// End of MUXF6_L_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

96 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF7

SUXILINX®

MUXF7

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

MUXEF7? provides a multiplexer function in a full Spartan-3E CLB for creating a
function-of-7 lookup table or a 16-to-1 multiplexer in combination with the associated
lookup tables. Local outputs (LO) of MUXF6 are connected to the 10 and I1 inputs of
the MUXF7?. The S input is driven from any internal net. When Low, S selects 10. When
High, S selects I1.

The variants, “MUXF7_D"”and “MUXF7_L", provide additional types of outputs that

X8431 can be used by different timing models for more accurate pre-layout timing
estimation.
Inputs Outputs
S 10 1 o
0 10 X 10
1 X 11 11
X 0 0 0
X
Usage
This design element can only be instantiated.
VHDL Instantiation Template
-- MUXF7 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF7_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used
-- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.
Library UNISIM;
use UNISIM.vcomponents.all;
-—  <==——- Cut code below this line and paste into the architecture body---->
-- MUXF7: CLB MUX to tie two MUXF6's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i
MUXF7_inst MUXF7
port map (
o => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF6 LO out)
I1 => I1, -- Input (tie to MUXF6 LO out)
S => S -- Input select to MUX
)
-- End of MUXF7_inst instantiation
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 97

ISE 8.2i



SUXILINX®

MUXF7

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Template

MUXF7 In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name

declaration (MUXF7_inst) and/or the port declarations within the
code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.

<----- Cut code below this line---->

// MUXF7: CLB MUX to tie two MUXF6's together with general output

// For use with FPGA
// Xilinx HDL Libraries Guide Version 8.11i

MUXF7 MUXF7_inst (

.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF6 LO out)
.I1(1I1), // Input (tie to MUXF6 LO out)

.S(8) // Input select to MUX

)

// End of MUXF7_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

98

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF7_D

SUXILINX®

MUXF7_D
Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXF7_D provides a multiplexer function in a full Spartan-3E CLB (four slices) for
creating a function-of-7 lookup table or a 16-to-1 multiplexer in combination with the

0 — LO associated lookup tables. Local outputs (LO) of MUXEF6 are connected to the 10 and I1
o inputs of the MUXF7. The S input is driven from any internal net. When Low, S selects
1 = 10. When High, S selects I1.
S : Outputs O and LO are functionally identical. The O output is a general interconnect.
X8432 The LO output connects to other inputs within the same CLB slice.
See also “MUXF7”and “MUXF7_L".
Inputs Outputs
S 10 1 o LO
0 10 X 10 10
1 X In In In
X 0 0 0 0
X 1 1 1 1
Usage
This design element can only be instantiated.
VHDL Instantiation Template
-- MUXF7_D : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (MUXF7_D_inst) and/or the port declarations

code : after the "=>" assignment maybe changed to properly
reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- MUXF7_D: CLB MUX to tie two MUXF6's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF7_D_inst : MUXF7_D

port map (
LO => LO, -- Ouptut of MUX to local routing
0 => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF6 LO out)
I1 => 1I1, -- Input (tie to MUXF6 LO out)
S => S -- Input select to MUX

)i

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 99

ISE 8.2i



SXILINX® MUXF7_D

-- End of MUXF7_D_inst instantiation

Verilog Instantiation Template

// MUXF7_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF7_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// MUXF7_D: CLB MUX to tie two MUXF6's together with general and local outputs
// For use with FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

MUXF7_D MUXF7_D_inst (

.LO(LO), // Ouptut of MUX to local routing
.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF6 LO out)
LI1(11), // Input (tie to MUXF6 LO out)

.S(8) // Input select to MUX

)

// End of MUXF7_D_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

100 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF7_L

SUXILINX®

MUXF7_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

MUXF7_L provides a multiplexer function in a full Spartan-3E CLB (four slices) for
creating a function-of-7 lookup table or a 16-to-1 multiplexer in combination with the

LO associated lookup tables. Local outputs (LO) of MUXEF6 are connected to the 10 and I1
inputs of the MUXF7. The S input is driven from any internal net. When Low, S selects
10. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

X8433

-= MUXF7_L
-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

See also “MUXF7”and “MUXF7_D”.

Inputs Output
S 10 1 LO
0 10 X 10
1 X 11 11
X 0 0 0
X 1

Usage

This design element can only be instantiated.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (MUXF7_L_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- MUXF7_L: CLB MUX to tie two MUXF6's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF7_L_inst

port map (
LO => LO,
I0 => IO,
I1 => I1,
S => S

)

MUXF7_L

-- Output of MUX to local routing
-- Input (tie to MUXF6 LO out)

-- Input (tie to MUXF6 LO out)

-- Input select to MUX

-- End of MUXF7_L_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 101

ISE 8.2i



SXILINX® MUXF7_L

Verilog Instantiation Template

// MUXF7_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (MUXF7_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// MUXF7_L: CLB MUX to tie two MUXF6's together with local output
// For use with FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i
MUXF7_L MUXF7_L_inst (
.LO(LO), // Output of MUX to local routing
.I0(10), // Input (tie to MUXF6 LO out)
.I1(1I1), // Input (tie to MUXF6 LO out)
.S(8) // Input select to MUX
)
// End of MUXF7_L_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
102 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



MUXF8

SUXILINX®

MUXF8

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

-= MUXF8

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

X8434

MUXEFS8 provides a multiplexer function in full Spartan-3E CLBs for creating a
function-of-8 lookup table or a 32-to-1 multiplexer in combination with the associated
lookup tables, MUXF5s, MUXF6s, and MUXF7s. Local outputs (LO) of MUXF7 are
connected to the 10 and I1 inputs of the MUXEFS. The (S) input is driven from any
internal net. When Low, (S) selects 10. When High, (S) selects I1.

See also “MUXF8 _D”and “MUXF8_L”.

Inputs Outputs
S 10 1 (o]
0 10 X 10
1 X 11 11
X 0 0 0
X 1

Usage

This design element can only be instantiated.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (MUXF8_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- MUXF8: CLB MUX to tie two MUXF7's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF8_inst

port map (
o => 0O,
I0 => IO,
Il => I1,
S => S

)

MUXF8

-- Output of MUX to general routing
-- Input (tie to MUXF7 LO out)

-- Input (tie to MUXF7 LO out)

-- Input select to MUX

-- End of MUXF8_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 103

ISE 8.2i



SUXILINX®

MUXF8

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Template

MUXF8 In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name

declaration (MUXF8_inst) and/or the port declarations within the
code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.

<----- Cut code below this line---->

// MUXF8: CLB MUX to tie two MUXF7's together with general output

// For use with FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

MUXF8 MUXF8_inst (

.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF7 LO out)
.I1(1I1), // Input (tie to MUXF7 LO out)

.S(8) // Input select to MUX

)

// End of MUXF8_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

104 www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF8_D

SUXILINX®

MUXF8_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

MUXF8_D provides a multiplexer function in two full Spartan-3E CLBs for creating a
function-of-8 lookup table or a 32-to-1 multiplexer in combination with the associated

10
—— Lo four lookup tables and two MUXEFS8s. Local outputs (LO) of MUXF7 are connected to
o the 10 and I1 inputs of the MUXES. The (S) input is driven from any internal net. When
1 Low, (S) selects I0. When High, (S) selects I1.
S Outputs O and LO are functionally identical. The O output is a general interconnect.
X8435 The LO output is used to connect to other inputs within the same CLB slice.
See also “MUXF8”and “MUXF8 _L”.
Inputs Outputs
S 10 1 o LO
0 10 X 10 10
1 X In In In
X 0 0 0 0
X 1 1 1 1
Usage
This design element can only be instantiated.
VHDL Instantiation Template
-- MUXF8_D : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (MUXF8_D_inst) and/or the port declarations

code : after the "=>" assignment maybe changed to properly
reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- MUXF8_D: CLB MUX to tie two MUXF7's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF8_D_inst : MUXF8_D

port map (
LO => LO, -- Ouptut of MUX to local routing
0 => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF7 LO out)
I1 => 1I1, -- Input (tie to MUXF7 LO out)
S => S -- Input select to MUX

)i

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 105

ISE 8.2i



SXILINX® MUXF8_D

-- End of MUXF8_D_inst instantiation

Verilog Instantiation Template

// MUXF8_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF8_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// MUXF8_D: CLB MUX to tie two MUXF7's together with general and local outputs
// For use with FPGAa,
// Xilinx HDL Libraries Guide Version 8.11i

MUXF8_D MUXF8_D_inst (

.LO(LO), // Ouptut of MUX to local routing
.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF7 LO out)
LI1(11), // Input (tie to MUXF7 LO out)

.S(8) // Input select to MUX

)

// End of MUXF8_D_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

106 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



MUXF8_L

SUXILINX®

MUXF8_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

MUXEF8_L provides a multiplexer function in two full Spartan-3E CLBs for creating a
function-of-8 lookup table or a 32-to-1 multiplexer in combination with the associated

10
— LO four lookup tables and two MUXEFS8s. Local outputs (LO) of MUXF7 are connected to
the 10 and I1 inputs of the MUXFS. The S input is driven from any internal net. When
" Low, S selects 10. When High, S selects I1.
S The LO output connects to other inputs within the same CLB slice.
X8436
See also “MUXF8”and “MUXF8_D”.
Inputs Output
S 10 1 LO
0 10 X 10
1 X 11 11
X 0 0 0
X 1
Usage
This design element can only be instantiated.
VHDL Instantiation Template
-- MUXF8_L In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF8_L_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- MUXF8_L: CLB MUX to tie two MUXF7's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF8_L_inst

port map (
LO => LO,
I0 => IO,
I1 => I1,
S => S

)

MUXF8_L

-- Output of MUX to local routing
-- Input (tie to MUXF7 LO out)

-- Input (tie to MUXF7 LO out)

-- Input select to MUX

-- End of MUXF8_IL_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 107

ISE 8.2i



SXILINX® MUXF8_L

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Template

MUXF8_L : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (MUXF8_L_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.
<----- Cut code below this line---->

// MUXF8_L: CLB MUX to tie two MUXF7's together with local output
// For use with FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

MUXF8_L MUXF8_L_inst (

.LO(LO), // Output of MUX to local routing
.I0(10), // Input (tie to MUXF7 LO out)
.I1(1I1), // Input (tie to MUXF7 LO out)
.S(8) // Input select to MUX

)

// End of MUXF8_L_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

108 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



OBUF

SUXILINX®

OBUF

Primitive:

OBUF

Lo

X9445

-= OBUF
-= VHDL
-- instance

-- code

-- Library

-= for
-- Xilinx

Single-ended Output Buffers

Output buffers are necessary for all output signals because they isolate the internal
circuit and provide drive current for signals leaving a chip. The OBUF is a constantly
enabled output buffer that specifies a single-ended output when a 3-state is not
necessary for the output. The output (O) of an OBUF should be connected directly to
the top-level ouput port in the design.

Usage

OBUFs are optional for use in schematics because they are automatically inserted into
a design, if necessary. To manually add this component, however, the component
should be placed in the top-level schematic connecting the output directly to an
output port marker.

OBUFs are available in bundles of 4, 8, or 16 to make it easier for you to incorporate
them into your design without having to apply multiples of them one at a time. (The

: added before the entity declaration.
: contains the component declarations for all Xilinx
-- primitives :
: for simulation.

bundles are identified as OBUF4, OBUFS, and OBUF16.)

Available Attributes

Attribute Allowed Values Default

Type

Description

DRIVE 2,4,6,8,12,16, |12

24

Integer

Sets the output drive in
mA.

IOSTANDARD | String "DEFAULT” "DEFAULT”

Use to assign an I/O
standard to an I/O
primitive.

SLEW "SLOW", "FAST”, | "SLOW”

and “QUIETIO”

String

Sets the output rise and fall
time.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code. The

-- declaration :

instance name (OBUF_inst) and/or the port declarations

: after the "=>" assignment maybe changed to properly
: connect this function to the design.
: out inputs/outs that are not necessary.

Delete or comment

: In addition to adding the instance declaration, a use
-- declaration :

statement for the UNISIM.vcomponents library needs to be
This library

primitives and points to the models that are used

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- OBUF: Single-ended Output Buffer
-- All devices

-- Xilinx

HDL Libraries Guide version 8.11i

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

109




STXILINX® OBUF

OBUF_inst : OBUF

generic map (
DRIVE => 12,
TIOSTANDARD => "DEFAULT",
SLEW => "SLOW")

port map (
0 => 0, -- Buffer output (connect directly to top-level port)
I =>1 -- Buffer input

)

-- End of OBUF_inst instantiation

Verilog Instantiation Template

// OBUF : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (OBUF_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <===== Cut code below this line---->
// OBUF: Single-ended Output Buffer
// All devices
// Xilinx HDL Libraries Guide Version 8.11i
OBUF # (
.DRIVE(12), // Specify the output drive strength
.IOSTANDARD ( "DEFAULT"), // Specify the output I/O standard
.SLEW("SLOW") // Specify the output slew rate
) OBUF_inst (
.0(0), // Buffer output (connect directly to top-level port)
LI(I) // Buffer input
)
// End of OBUF_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
110 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



OBUFDS S XILINX®

OBUFDS

Primitive: Differential Signaling Output Buffer with Selectable 1/0
Interface

o OBUEFDS is a single output buffer that supports low-voltage, differential signaling
I (1.8v CMOS). OBUFDS isolates the internal circuit and provides drive current for
m signals leaving the chip. Its output is represented as two distinct ports (O and OB),
OBUFDS one deemed the "master" and the other the "slave." The master and the slave are
opposite phases of the same logical signal (for example, MYNET and MYNETB).

X9259
Inputs Outputs
| o OB
0 0 1
1 1 0
Usage
This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values Default Description
IOSTANDARD | String "DEFAULT” "DEFAULT” | Use to assign an I/O standard
to an I/O primitive.
VHDL Instantiation Template
-— OBUFDS : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (OBUFDS_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-— : connect this function to the design. Delete or comment
-= : out inputs/outs that are not necessary.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <= Cut code below this line and paste into the architecture body---->

-- OBUFDS: Differential Output Buffer
-- FPGAs.
-- Xilinx HDL Libraries Guide version 8.11

OBUFDS_inst : OBUFDS
generic map (
TIOSTANDARD => "DEFAULT")

port map (
0 => 0, -- Diff_p output (connect directly to top-level port)
OB => OB, -- Diff_n output (connect directly to top-level port)
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 111

ISE 8.2i



STXILINX® OBUFDS

I =>1 -- Buffer input
-- End of OBUFDS_inst instantiation

Verilog Instantiation Template

// OBUFDS : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (OBUFDS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->
// OBUFDS: Differential Output Buffer
// Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11i
OBUFDS # (
.IOSTANDARD ( "DEFAULT") // Specify the output I/O standard
) OBUFDS_inst (
.0(0), // Diff_p output (connect directly to top-level port)
.OB (OB) , // Diff_n output (connect directly to top-level port)
LI(I) // Buffer input
)
// End of OBUFDS_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
112 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



OBUFT

SUXILINX®

OBUFT
Primitive:

OBUFT

OBUFT
VHDL
instance
-- declaration :
code

instance

Library
-- declaration :

: after the
: connect this function to the design.
: out inputs/outs that are not necessary.

: In addition to adding the instance declaration,
statement for the UNISIM.vcomponents library needs to be

3-State Output Buffer with Active-Low Output Enable

Output buffers are necessary for all output signals because they isolate the internal
circuit and provide drive current for signals leaving a chip. The OBUFT is a 3-state
output buffer with input I, output O, and active-Low output enables (T). When T is
Low, data on the inputs of the buffers is transferred to the corresponding outputs.
When T is High, the output is high impedance (off or Z state).

An OBUFT output should be connected directly to the top-level output or inout port.
OBUFTs are generally used when a single-ended output is needed with a 3-state
capability, such as the case when building bidirectional I/O.

Inputs Outputs
T | o
1 X V4
0 1 1
0 0 0

Usage

OBUFTs are generally inferred by the synthesis when an output port is specified to
have a high impedance, Z, as well as drive an output. It is generally suggested to
infer this element however if more control of the usage of this component is necessary,
it can be instantiated.

Available Attributes

Default
12

Attribute
DRIVE

Type Allowed Values Description

Integer

2,4,6,8,12,16,24 Selects output drive
strength (mA) for the
SelectIO buffers that use
the LVTTL, LVCMOS12,
LVCMOS15, LVCMOS18,
LVCMOS25, or LVCMOS33

interface I/O standard.

IOSTANDARD | String "DEFAULT” "DEFAULT” | Use to assign an I/O

standard to an I/O
primitive.

SLEW "SLOW", "FAST”, |"SLOW”

and “QUIETIO”

String Sets the output rise and fall

time.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code.

The
(OBUFT_inst) and/or the port declarations
assignment maybe changed to properly
Delete or comment

name
s

a use

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com 113



®
SUXILINX OBUFT
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used
-- : for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.
Library UNISIM;
use UNISIM.vcomponents.all;
-— <==——- Cut code below this line and paste into the architecture body---->
-- OBUFT: Single-ended 3-state Output Buffer
-- All devices
-- Xilinx HDL Language Template version 7.11i
OBUFT_inst : OBUFT
generic map (
DRIVE => 12,
IOSTANDARD => "DEFAULT",
SLEW => "SLOW")
port map (
0 => 0, -- Buffer output (connect directly to top-level port)
I =>T1, -- Buffer input
T => T -- 3-state enable input
)
-- End of OBUFT_inst instantiation
Verilog Instantiation Template
// OBUFT : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (OBUFT_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->
// OBUFT: Single-ended 3-state Output Buffer
// All devices
// Xilinx HDL Language Template version 7.11
OBUFT # (
.DRIVE (12), // Specify the output drive strength
.IOSTANDARD ( "DEFAULT"), // Specify the output I/O standard
.SLEW("SLOW") // Specify the output slew rate
) OBUFT_inst (
.0(0), // Buffer output (connect directly to top-level port)
LI(I), // Buffer input
LT (T) // 3-state enable input
)
// End of OBUFT_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
114 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



OBUFTDS

SUXILINX®

-- Xilinx

OBUFTDS

Primitive: 3-State Differential Signaling Output Buffer with Active Low
Output Enable and Selectable I/O Interface

o
oB

OBUFTDS
X9260

OBUFTDS is a single 3-state, differential signaling output buffer with active Low
enable and a Select I/O interface.

When T is Low, data on the input of the bulffer is transferred to the output (O) and

inverted output (OB). When T is High, both outputs are high impedance (off or Z
state).
Inputs Outputs
1 T (o) oB
X 1 V4 V4
0 0 0
1 0 1 0
Usage
This design element is available for instantiation only.
Available Attributes
Attribute Type Allowed Values Default Description
DRIVE Integer 2,4,6,8,12,16, |12 Selects output drive strength
24 (mA) for the SelectIO buffers
that use the LVTTL,
LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25, or
LVCMOS33 interface I/O
standard.
IOSTANDARD | String "DEFAULT” "DEFAULT” | Use to assign an I/0 standard
to an I/O primitive.
SLEW String "SLOW" or "SLOW” Sets the output rise and fall
"FAST” time.

VHDL Instantiation Template

OBUFTDS: Differential 3-state Output Buffer
All FPGA

OBUFTDS_inst :

OBUFTDS

HDL Libraries Guide version 8.11i

-- Edit the following generics to specify the I/0 standard, drive and slew rate.

generic map (
DRIVE => 12,
TOSTANDARD => "
SLEW => "SLOW")
port map (

o => 0O, -=
OB => OB, -=
I =>T1I, -=
T => T -=

LVDS_25",

Diff_p output

Buffer input

(connect directly to top-level port)
Diff_n output (connect directly to top-level port)

3-state enable input

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i

www.Xilinx.com

115



STXILINX® OBUFTDS

-- End of OBUFTDS_inst instantiation

Verilog Instantiation Template

// OBUFTDS: Differential bidirectional Buffer

// All FPGAs

// Xilinx HDL Libraries Guide version 8.1i OBUFTDS OBUFTDS_inst ( .0(0),
// Buffer output .IO(IO), // Diff_p inout (connect directly to

// top-level port) .IOB(IOB),

// Diff_n inout (connect directly to

// top-level port) .I(I),

// Buffer input .T(T)

// 3-state enable input );

// Edit the following defparams to specify the I/0 standard, drive and
// slew rate. If the instance name is change, that change needs to be

// reflecting the this defparam. defparam OBUFTDS_inst.DRIVE = 12; defparam OBUFTDS_inst.IOSTANDARD =
"LVDS_25"; defparam OBUFTDS_inst.SLEW = "SLOW";

// End of OBUFTDS_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

116 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



ODDR2

SUXILINX®

ODDR2

Primitive: Double Data Rate Output D Flip-Flop with Optional Data
Alignment, Clock Enable and Programmable Synchronous or
Asynchronous Set/Reset

D0
D1
Co

Ct
CE

ODDR2

ODDR2
VHDL
instance

declaration

code

Library
declaration

for
Xilinx

primitives

The ODDR?2 is an output double data rate (DDR) register useful in producing double
data-rate signals exiting the FPGA. The ODDR2 requires two clocks to be connected
to the component, C0 and C1, so that data is provided at the positive edge of both C0O
and C1 clocks. The ODDR?2 features an active high clock enable port, CE, which can
be used to suspend the operation of the registers and both set and reset ports that can
be configured to be synchronous or asynchronous to the respective clocks. The
ODDR?2 has an optional alignment feature, which allows data to be captured by a
single clock yet clocked out by two clocks.

X023

Usage

The ODDR2 must be instantiated to be incorporated into a design. To change the
default behavior of the ODDR?2, attributes can be modified via the generic map
(VHDL) or named parameter value assignment (Verilog) as a part of the instantiated
component. The ODDR?2 can be either connected directly to a top-level output port in
the design where an appropriate output buffer can be inferred or to an instantiated
OBUE, IOBUF, OBUFDS, OBUFTDS or IOBUFDS. All inputs and outputs of this
component should either be connected or properly tied off.

Available Attributes

Attribute Type Allowed Values Default Description
DDR_ String "NONE", "C0"or |"NONE” | Sets output alignment to
ALIGNMENT "C1” "NONE", "C0" or "C1."
INIT Integer Oorl 0 Sets initial state of the QO

output to 0 or 1.
SRTYPE String "SYNC" or "SYNC” Specifies "SYNC" or
"ASYNC” "ASYNC" set/reset.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code. The
: instance name (ODDR2_inst) and/or the port declarations
: after the "=>" assignment maybe changed to properly
: connect this function to the design. All inputs
: and outputs must be connected.

: In addition to adding the instance declaration, a use

: statement for the UNISIM.vcomponents library needs to be
: added before the entity declaration. This library

: contains the component declarations for all Xilinx

: primitives and points to the models that are used

: for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

Cut code below this line and paste into the architecture body---->

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 117

ISE 8.2i



STXILINX® ODDR2

-- ODDR2: Output Double Data Rate Output Register with Set, Reset
- and Clock Enable. Spartan-3E
-- Xilinx HDL Libraries Guide version 8.11

ODDR2_inst : ODDR2
generic map (

DDR_ALIGNMENT => "NONE", -- Sets output alignment to "NONE", "CO", "C1"
INIT => '0', -- Sets initial state of the Q output to '0' or '1l'
SRTYPE => "SYNC") -- Specifies "SYNC" or "ASYNC" set/reset
port map (
Q => Q, -- 1-bit output data
CO0 => C0, -- 1-bit clock input
Cl => C1l, -- 1-bit clock input
CE => CE, -- 1l-bit clock enable input
DO => DO, -- 1-bit data input (associated with CO0)
D1 => D1, -- 1-bit data input (associated with C1)
R => R, -- 1-bit reset input
S => 8§ -- 1-bit set input

-- End of ODDR2_inst instantiation

Verilog Instantiation Template

// ODDR2 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (ODDR2_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <===== Cut code below this line---->
// ODDR2: Output Double Data Rate Output Register with Set, Reset
// and Clock Enable. Spartan-3E
// Xilinx HDL Libraries Guide Version 8.11i
ODDR2 # (
.DDR_ALIGNMENT ("NONE"), // Sets output alignment to "NONE", "CO" or "C1"
LINIT(1'bO), // Sets initial state of the Q output to 1'b0 or 1'bl
.SRTYPE ("SYNC") // Specifies "SYNC" or "ASYNC" set/reset
) ODDR2_inst (
.0(Q), // l-bit DDR output data
.co(co), // 1-bit clock input
.cl(c1l), // 1-bit clock input
.CE(CE), // 1-bit clock enable input
DO(DO), // 1l-bit data input (associated with CO)
.D1(D1), // 1l-bit data input (associated with C1)
.R(R), // 1-bit reset input
.S(S) // 1l-bit set input
)
// End of ODDR2_inst instantiation
For More Information
Consult the Spartan-3E Data Sheet.
118 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



PULLDOWN S XILINX®

PULLDOWN
Primitive: Resistor to GND

PULLDOWN resistor elements are connected to output, or bidirectional pads to
guarantee a logic Low level for nodes that might Float.

Usage

This design element is instantiated rather than inferred.

X3860
VHDL Instantiation Template
--  PULLDOWN : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (PULLDOWN_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : connect this function to the design. Delete or comment
-= : out inputs/outs that are not necessary.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->
-- PULLDOWN: I/O Buffer Weak Pull-down
-= All FPGA
-- Xilinx HDL Libraries Guide version 8.11
PULLDOWN_inst : PULLDOWN
port map (

0O => 0 -- Pulldown output (connect directly to top-level port)
)

-- End of PULLDOWN_inst instantiation

Verilog Instantiation Template

// PULLDOWN : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (PULLDOWN_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// PULLDOWN: I/O Buffer Weak Pull-down
// All FPGA
// Xilinx HDL Libraries Guide Version 8.11i

PULLDOWN PULLDOWN_inst (
.0(0), // Pulldown output (connect directly to top-level port)
) ;

// End of PULLDOWN_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 119
ISE 8.2i



SXILINX® PULLDOWN

For More Information
Consult the Spartan-3E Data Sheet.

120 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



PULLUP S XILINX®

PULLUP

Primitive: Resistor to VCC, Open-Drain, and 3-State Outputs

The pull-up elements establish a High logic level for open-drain elements and macros
when all the drivers are off.

Usage

X3861 This design element is instantiated rather than inferred.

VHDL Instantiation Template

PULLUP : In order to incorporate this function into the design,
VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The
declaration : instance name (PULLUP_inst) and/or the port declarations

code : after the "=>" assignment maybe changed to properly
: connect this function to the design. Delete or comment
out inputs/outs that are not necessary.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used
: for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—--- Cut code below this line and paste into the architecture body---->

-- PULLUP: I/O Buffer Weak Pull-up
-= All FPGA
-- Xilinx HDL Libraries Guide version 8.11

PULLUP_inst : PULLUP
port map (

0O => 0 -- Pullup output (connect directly to top-level port)
)

-- End of PULLUP_inst instantiation

Verilog Instantiation Template

// PULLUP : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (PULLUP_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->

// PULLUP: I/0 Buffer Weak Pull-up

// All FPGA

// Xilinx HDL Libraries Guide Version 8.11i

PULLUP PULLUP_inst (

.0(0), // Pullup output (connect directly to top-level port)

)

// End of PULLUP_inst instantiation
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 121

ISE 8.2i



SXILINX® PULLUP

For More Information
Consult the Spartan-3E Data Sheet.

122 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM16X1D

SUXILINX®

RAM16X1D

Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM

we |RAM16X1D | spo

| 0P0

DPRAO |
DPRA1 |
DPRA? |
DPRA3 |

X4950

RAM16X1D is a 16-word by 1-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA3 — DPRAO) and the write address (A3 — A0). These two address ports
are completely asynchronous. The read address controls the location of the data
driven out of the output pin (DPO), and the write address controls the destination of a
valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D) into the word selected by the
4-bit write address. For predictable performance, write address and data inputs must
be stable before a Low-to-High WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the
WCLK input net is absorbed into the block.

Mode selection is shown in the following truth table.

Inputs Outputs

SPO DPO
data_a data_d
data_a data_d
data_a data_d

D data_d
data_a data_d

WE (mode) WCLK

0 (read) X

1 (read) 0

1 (read) 1

1 (write) T

1 (read) l
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRAQ

X || X| x| X]|] O

The SPO output reflects the data in the memory cell addressed by A3 — A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 — DPRAO.

Note: The write process is not affected by the address on the read address port.

Specifying Initial Contents of a RAM

You can use the INIT attribute to specify an initial value directly on the symbol if the
RAM is 1 bit wide and 16, 32, 64, or 128 bits deep. The value must be a hexadecimal
number, for example, INIT=ABAC. If the INIT attribute is not specified, the RAM is
initialized with zero.

See the "INIT" section of the Constraints Guide for more information on the INIT
attribute.

For Spartan-3E wide RAMs (2, 4, and 8-bit wide single port synchronous RAMs with a
WCLK) can also be initialized. These RAMs, however, require INIT_xx attributes.
Usage

This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 123

ISE 8.2i



SXILINX® RAM16X1D
Available Attributes
Attribute Type Allowed Values Default Description
INIT 16-Bit 16-Bit Hexadecimal | All zeros Initializes ROMs, RAMs,
Hexadeci registers, and look-up
mal tables.

RAM16X1D
VHDL
instance
-- declaration
code

Library
-- declaration
for

Xilinx
primitives

Library UNISIM;

VHDL Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (RAM16X1D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- RAM16X1D:

16 x 1 positive edge write,
All FPGAs

-- Xilinx HDL Libraries Guide version 8.11

RAM16X1D_inst

generic map

RAM16X1D
(

INIT => X"0000")

port map (

DPO => DPO, -- Port A 1l-bit data output
SPO => SPO, -- Port B l-bit data output

A0 => A0, -- Port A address[0] input bit
Al => Al, -- Port A address[l] input bit
A2 => A2, -- Port A address[2] input bit
A3 => A3, -- Port A address[3] input bit
D => D, -- Port A 1l-bit data input
DPRAO => DPRAQO, -- Port B address[0] input bit
DPRA1 => DPRAl, -- Port B address([l] input bit
DPRA2 => DPRA2, -- Port B address([2] input bit
DPRA3 => DPRA3, -- Port B address([3] input bit
WCLK => WCLK, -- Port A write clock input

WE => WE -- Port A write enable input

)

-- End of RAM16X1D_inst instantiation

// RAM16X1D
// Verilog
// instance

Verilog Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

asynchronous read dual-port distributed RAM

// declaration (RAM16X1D_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// RAM16X1D: 16 x 1 positive edge write, asynchronous read dual-port distributed RAM
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i
124 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



RAM16X1D

SUXILINX®

RAM16X1D # (

.INIT(16'h0000)

) RAM16X1D_inst

.DPO (DPO) ,
.SPO(SPO) ,
.A0(A0),
LAl (Aal),
.A2(A2),
.A3(A3),
.D(D),

.DPRAQ

DPRAO

(
.DPRAL (DPRA1
(

.DPRA2

DPRA2

.DPRA3 (DPRA3
.WCLK (WCLK) ,
.WE (WE)

)

(

).
).
).
).

// Initial contents of RAM

Port
Port
Port
Port
Port
Port
Port
Port
Port
Port
Port
Port
Port

o= =B oo Rl vvlvvilvo = = i vVl o

1-bit data output
1-bit data output
address[0] input bit
address[1l] input bit
address[2] input bit
address[3] input bit
1-bit data input
address[0] input bit
address[1l] input bit
address[2] input bit
address[3] input bit
write clock input
write enable input

// End of RAM16X1D_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

125



SXILINX® RAM16X1D

126 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM16X1S

SUXILINX®

RAM16X1S

Primitive: 16-Deep by 1-Wide Static Synchronous RAM
RAM16X1S is a 16-word by 1-bit static random access memory with synchronous
we |RAMIBX1S| o write capability. When the write enable (WE) is set Low, transitions on the write clock
— — (WCLK) are ignored and data stored in the RAM is not affected. When WE is set High,
D any positive transition on WCLK loads the data on the data input (D) into the word
WCLK_ selected by the 4-bit address (A3 — A0). For predictable performance, address and data
AD | inputs must be stable before a Low-to-High WCLK transition. This RAM block
M assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
A2 | Any inverter placed on the WCLK input net is absorbed into the block.
A3 The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.
Xigh You can initialize RAM16X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.
Mode selection is shown in the following truth table.
Inputs Outputs
WE(mode) WCLK D o
0 (read) X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write) T D D
1 (read) l X Data
Data = word addressed by bits A3 — A0
Usage
This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.
Available Attributes
Attribute Type Allowed Values Default Description
INIT Hexadeci | Any 16-bit value. All zeros Specifies initial contents of
mal the RAM.
VHDL Instantiation Template
-- RAM16X1S : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAM16X1S_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com 127



SXILINX® RAM16X1S

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- RAM16X1S: 16 x 1 posedge write distributed => LUT RAM
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.11i

RAM16X1S_inst : RAM16X1S
generic map (
INIT => X"0000")

port map (
0O => 0, -- RAM output
A0 => A0, -- RAM address[0] input
Al => Al, -- RAM address[1l] input
A2 => A2, -- RAM address([2] input
A3 => A3, -- RAM address[3] input
D => D, -- RAM data input
WCLK => WCLK, -- Write clock input
WE => WE -- Write enable input

)

-- End of RAM16X1S_inst instantiation

Verilog Instantiation Template

// RAM16X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (RAM16X1S_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// RAM16X1S: 16 x 1 posedge write distributed (LUT) RAM
// All FPGA
// Xilinx HDL Libraries Guide Version 8.11i

RAM16X1S # (
.INIT(16'h0000) // Initial contents of RAM
) RAM16X1S_inst (

.0(0), // RAM output

A0 (AO0), // RAM address[0] input
LAl (Al), // RAM address[1l] input
A2 (A2), // RAM address[2] input
A3 (A3), // RAM address[3] input
.D(D), // RAM data input

.WCLK (WCLK), // Write clock input
.WE (WE) // Write enable input

)

// End of RAM16X1S_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

128 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM32X1D

SUXILINX®

RAM32X1D

Primitive:

DPRAO |
DPRAA1 |
DPRA2 |
DPRAS |
DPRA4 |

RAM32x1D

SPO

DPO

X9261

32-Deep by 1-Wide Static Dual Static Port Synchronous RAM

RAMB32X1D is a 32-word by 1-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA4 — DPRAO) and the write address (A4 — A0). These two address ports
are completely asynchronous. The read address controls the location of the data
driven out of the output pin (DPO), and the write address controls the destination of a
valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D) into the word selected by the
5-bit write address. For predictable performance, write address and data inputs must
be stable before a Low-to-High WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the
WCLK input net is absorbed into the block.

You can initialize RAM32X1D during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.

Mode selection is shown in the following truth table.

Inputs Outputs
WE (mode) WCLK D SPO DPO
0 (read) X X data_a data_d
1 (read) 0 X data_a data_d
1 (read) 1 X data_a data_d
1 (write) T D D data_d
1 (read) l X data_a data_d

data_a = word addressed by bits A4-AQ
data_d = word addressed by bits DPRA4-DPRAQ

The SPO output reflects the data in the memory cell addressed by A4 — A0. The DPO
output reflects the data in the memory cell addressed by DPRA4 — DPRAO.

Note: The write process is not affected by the address on the read address port.

Usage

This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.

Available Attributes

. Allowed _—
Attribute Type Values Default Description
INIT 32-Bit 32-Bit All zeros Initializes ROMs,
Hexadeci | Hexadecimal RAMs, registers, and
mal look-up tables.

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com 129



SUXILINX®

RAM32X1D

-= RAM32X1D

-= VHDL

-- instance

-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

-- Copy the following two statements and paste them before the

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code.

The

instance name (RAM32X1D_inst) and/or the port declarations
assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

after the "=>"

In addition to adding the instance declaration,

a use

statement for the UNISIM.vcomponents library needs to be

added before the entity declaration.

This library

contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Entity declaration, unless they already exist.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- RAM32X1D:

RAM32X1D_inst
generic map (

RAM32X1D

INIT => X"00000000")

port map (
DPO => DPO, -- Port A
SPO => SPO, -- Port B
A0 => A0, -- Port A
Al => Al, -- Port A
A2 => A2, -- Port A
A3 => A3, -- Port A
Ad => A4, -- Port A
D => D, -- Port A
DPRAO => DPRAO, -- Port B
DPRA1 => DPRAl, -- Port B
DPRA2 => DPRA2, -- Port B
DPRA3 => DPRA3, -- Port B
DPRA4 => DPRA4, -- Port B
WCLK => WCLK, -- Port A
WE => WE -- Port A

)

32 x 1 positive edge write,
Viretx-II/II-Pro
-- Xilinx HDL Libraries Guide version 8.11

1-bit data
1-bit data
address[0]
address[1]
address[2]
address[3]
address[4]
1-bit data
address[0]
address[1]
address|[2]
address[3]
address[4]

output

output

input bit
input bit
input bit
input bit
input bit
input

input bit
input bit
input bit
input bit
input bit

write clock input
write enable input

End of RAM32X1D_inst instantiation

// RAM32X1D
// Verilog
// instance
// declaration

Verilog Instantiation Template

asynchronous read dual-port distributed RAM

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

(RAM32X1D_inst)

The instance name

and/or the port declarations within the

All inputs

// code parenthesis maybe changed to properly reference and
// connect this function to the design.

// and outputs must be connected.

/] <===== Cut code below this line---->

// RAM32X1D:
/7

RAM32X1D # (

.INIT(32'h00000000) //

) RAM32X1D_inst (

.DPO (DPO) ,
.SPO (SPO) ,

.A0(A0),
Al(Al),
A2 (A2),
.A3(A3),
A4 (A4),

32 x 1 positive edge write,
Viretx-II/II-Pro
// Xilinx HDL Libraries Guide Version 8.11i

// Port A 1-bit data
// Port B 1l-bit data
// Port A address[0]
// Port A address[1]
// Port A address[2]
// Port A address[3]
// Port A address[4]

Initial contents of RAM

output

output

input bit
input bit
input bit
input bit
input bit

asynchronous read dual-port distributed RAM

130

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM32X1D S XILINX®

.D(D), // Port A 1l-bit data input

.DPRAQ (DPRAQO), // Port B address[0] input bit

.DPRAL (DPRALl), // Port B address[l] input bit

.DPRA2 (DPRA2), // Port B address[2] input bit

.DPRA3 (DPRA3), // Port B address[3] input bit

.DPRA4 (DPRA4), // Port B address[4] input bit

.WCLK (WCLK) , // Port A write clock input

.WE (WE) // Port A write enable input

)

// End of RAM32X1D_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

131



SXILINX® RAM32X1D

132 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM32X1S

SUXILINX®

RAM32X1S

Primitive: 32-Deep by 1-Wide Static Synchronous RAM
RAMB32X1S is a 32-word by 1-bit static random access memory with synchronous
we |RAM32x1s]| o write capability. When the write enable is set Low, transitions on the write clock
D | I (WCLK) are ignored and data stored in the RAM is not affected. When WE is set High,
WCLK | X any positive transition on WCLK loads the data on the data input (D) into the word
A0 selected by the 5-bit address (A4 — A0). For predictable performance, address and data
Al inputs must be stable before a Low-to-High WCLK transition. This RAM block
A2 assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
:: Any inverter placed on the WCLK input net is absorbed into the block.
The signal output on the data output pin (O) is the data that is stored in the RAM at
X4943 the location defined by the values on the address pins.
You can initialize RAM32X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.
Mode selection is shown in the following truth table.
Inputs Outputs
WE (mode) WCLK D (0]
0 (read) X X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write) T D D
1 (read) l X Data
Data = word addressed by bits A4 — A0
Usage
This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.
Available Attributes
Attribute Type Allowed Values Default Description
INIT Hexa- Any 32-bit value. | All zeros Specifies initial contents of
decimal the RAM.
VHDL Instantiation Template
-- RAM32X1S : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAM32X1S_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 133

ISE 8.2i



SXILINX® RAM32X1S

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- RAM32X1S: 32 x 1 posedge write distributed => LUT RAM
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.11i

RAM32X1S_inst : RAM32X1S
generic map (
INIT => X"00000000")

port map (
0O => 0, -- RAM output
A0 => A0, -- RAM address[0] input
Al => Al, -- RAM address[1l] input
A2 => A2, -- RAM address([2] input
A3 => A3, -- RAM address[3] input
A4 => A4, -- RAM address([4] input
D => D, -- RAM data input
WCLK => WCLK, -- Write clock input
WE => WE -- Write enable input

)

-- End of RAM32X1S_inst instantiation

Verilog Instantiation Template

// RAM32X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (RAM32X1S_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// RAM32X1S: 32 x 1 posedge write distributed (LUT) RAM
// All FPGA
// Xilinx HDL Libraries Guide Version 8.11i

RAM32X1S # (
.INIT(32'h00000000) // Initial contents of RAM
) RAM32X1S_inst (

.0(0), // RAM output

A0 (A0), // RAM address[0] input
Al (Al), // RAM address[1l] input
A2 (A2), // RAM address[2] input
A3 (A3), // RAM address[3] input
A4 (Ad), // RAM address[4] input
.D(D), // RAM data input

.WCLK (WCLK), // Write clock input
.WE (WE) // Write enable input

)

// End of RAM32X1S_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

134 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM64X1S

SUXILINX®

RAM64X1S

Primitive:

WE | RAM64x1S

-- RAM64X1S
-= VHDL
-- instance

-- declaration :
: after the "=>" assignment maybe changed to properly
: reference and connect this function to the design.

: All inputs and outputs must be connected.

-= code

- Library

-- declaration :
: added before the entity declaration. This library

-= for

X9265

64-Deep by 1-Wide Static Synchronous RAM

RAM64X1S is a 64-word by 1-bit static random access memory (RAM) with
synchronous write capability. When the write enable is set Low, transitions on the

° write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE

is set High, any positive transition on WCLK loads the data on the data input (D) into
the word selected by the 6-bit address (A5 — A0). For predictable performance,
address and data inputs must be stable before a Low-to-High WCLK transition. This
RAM block assumes an active-High WCLK. However, WCLK can be active-High or
active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

the location defined by the values on the address pins.

The signal output on the data output pin (O) is the data that is stored in the RAM at

You can initialize RAM64X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.

Mode selection is shown in the following truth table.

Inputs Outputs
WE (mode) WCLK D o
0 (read) X X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write) T D D
1 (read) l X Data

Data = word addressed by bits A5 — A0

Usage

This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.

Available Attributes

Attribute Type Allowed Values Default Description
INIT 64-Bit 64-Bit Hexadecimal | All zeros Initializes ROMs, RAMs,
Hexa- registers, and look-up
decimal tables.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code. The

instance name (RAM64X1S_inst) and/or the port declarations

: In addition to adding the instance declaration,

a use

statement for the UNISIM.vcomponents library needs to be

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

135



SXILINX® RAM64X1S

-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <===== Cut code below this line and paste into the architecture body---->

-- RAM64X1S: 64 x 1 positive edge write, asynchronous read single-port distributed RAM
-- FPGAs
-- Xilinx HDL Libraries Guide version 8.11

RAM64X1S_inst : RAM64X1S
generic map (
INIT => X"0000000000000000")

port map (

0 => 0, -- 1-bit data output

A0 => A0, -- Address[0] input bit
Al => Al, -- Address[1l] input bit
A2 => A2, -- Address[2] input bit
A3 => A3, -- Address[3] input bit
Ad => A4, -- Address[4] input bit
A5 => A5, -- Address[5] input bit
D => D, -- 1-bit data input
WCLK => WCLK, -- Write clock input

WE => WE -- Write enable input

)

-- End of RAM64X1S_inst instantiation

Verilog Instantiation Template

// RAM64X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (RAM64X1S_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// RAM64X1S: 64 x 1 positive edge write, asynchronous read single-port distributed RAM
// FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

RAM64X1S # (
.INIT(64'h0000000000000000) // Initial contents of RAM
) RAM64X1S_inst (

.0(0), // 1-bit data output
A0 (A0), // Address[0] input bit
LAl (AL), // Address[1l] input bit
A2 (A2), // Address[2] input bit
A3 (A3), // Address[3] input bit
A4 (Ad), // Address[4] input bit
.A5 (A5), // Address[5] input bit
.D(D), // 1l-bit data input
.WCLK (WCLK), // Write clock input
.WE (WE) // Write enable input

)

// End of RAM64X1S_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

136 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAM128X1S

SUXILINX®

RAM128X1S

Primitive:

WE | RAM128x1S

WCLK

A1 |
A2 |
A3 |
&
AS |
A6 |

-- RAM128X1S
-= VHDL
-- instance

-- declaration :
: after the "=>"
: reference and connect this function to the design.
: All inputs and outputs must be connected.

-= code

- Library

-- declaration :
: added before the entity declaration.

-= for

X9267

128-Deep by 1-Wide Static Synchronous RAM

RAM128X1S is a 128-word by 1-bit static random access memory with synchronous
write capability. When the write enable is Low, transitions on the write clock (WCLK)

= are ignored and data stored in the RAM is not affected. When WE is High, any

positive transition on WCLK loads the data on the data input (D) into the word
selected by the 7-bit address (A6 — A0). For predictable performance, address and data
inputs must be stable before a Low-to-High WCLK transition. This RAM block
assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at

the location defined by the values on the address pins.

You can initialize RAM128X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.

Mode selection is shown in the following truth table.

Inputs Outputs
WE (mode) WCLK D o
0 (read) X X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write) T D D
1 (read) l X Data

Data = word addressed by bits A6 — A0

Usage

Below are example templates for instantiating this component into a design. These
templates can be cut and pasteddirectly into the user’s source code.

Available Attributes

Attribute Type Allowed Values Default Description
INIT 128-Bit 128-Bit Hexadecimal | All zeros Initializes ROMs, RAMs,
Hexadeci registers, and look-up
mal tables.

VHDL Instantiation Template

instance name

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code.
(RAM128X1S_inst)

The
and/or the port declarations

assignment maybe changed to properly

: In addition to adding the instance declaration,

a use

statement for the UNISIM.vcomponents library needs to be

This library

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

137



&

XILINX"®

RAM128X1S

Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that are used

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-- RAM128X1S:

<-—---- Cut code below this line and paste into the architecture body---->

-- FPGAs.

-- Xilinx HDL Libraries Guide version 8.11

RAM128X1S_inst
generic map (
INIT => X"00000000000000000000000000000000")

port map (
o => 0O,
A0 => A0,
Al => Al,
A2 => A2,
A3 => A3,
Ad => A4,
A5 => A5,
A6 => A6,
D => D,
WCLK => WCLK,
WE => WE

)

RAM128X1S

128 x 1 positive edge write,

1-bit data output

Address[0] input
Address[1] input
Address[2] input
Address[3] input
Address[4] input
Address[5] input
Address[6] input
1-bit data input
Write clock inpu

bit
bit
bit
bit
bit
bit
bit

t

Write enable input

-- End of RAM128X1S_inst instantiation

// declaration

// RAM128X1S:

asynchronous read single-port distributed RAM

Verilog Instantiation Template

RAM128X1S : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name

(RAM128X1S_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs

and outputs must be connect.

<----- Cut code below this line---->

// FPGAS.

// Xilinx HDL Libraries Guide Version 8.11i

RAM128X1S #(

.INIT(128'h00000000000000000000000000000000)

) RAM128X1S_inst
.0(0),

A6 (A6),
.D(D),
.WCLK (WCLK) ,
.WE (WE)

)

(

//
//
!/
//
//
!/
//
//
!/
//
//

1-bit data output
Address([0] input
Address[1l] input
Address[2] input
Address[3] input
Address[4] input
Address[5] input
Address[6] input
1-bit data input
Write clock input

128 x 1 positive edge write,

bit
bit
bit
bit
bit
bit
bit

Write enable input

// End of RAM128X1S_inst instantiation

asynchronous read single-port distributed RAM

For More Information

Consult the Spartan-3E Data Sheet.

// Initial contents of RAM

138

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAMB16_Sm_Sn S XILINX®

RAMB16 Sm Sn

Primitive: 16384-Bit Data Memory and 2048-Bit Parity Memory, Dual-
Port Synchronous Block RAM with Port Width (m or n) Configured to 1,
2,4,9, 18, or 36 Bits

WEA| RAMB16_S1_S1 WEA| RAMB16_S1_S2 WEA| RAMB16_S1_S4
ENA ENA ENA
SSRA SSRA SSRA

CLKA
ADDRA [13:0]

DIA [0:0]

DOA [0:0]
|___]

CLKA
ADDRA [13:0]

DIA [0:0]

L

DOA [0:0]
|___]

DOA [0:0]
||

WEB WEB WEB

ENB ENB ENB

SSRB DOB [0:0] SSRB DOB [1:0] SSRB DOB [3:0]

CLKB [ CLKB [ CLKB [—
ADDRB [13:0] ADDRB [12:0] ADDRB [11:0]

DIB [0:0] DIB [1:0] DIB [3:0]

WEA| RAMB16_S1_S9 WEA | RAMB16_S1_S18 WEA | RAMB16_S1_S36

ENA ENA ENA

SSRA DOA [0:0] SSRA DOA [0:0] SSRA DOA [0:0]

CLKA [ CLKA [— CLKA [—
ADDRA [13:0] ADDRA [13:0] ADDRA [13:0]

DIA [0:0]

WEB
ENB
SSRB
CLKB
ADDRB [10:0]

DIB [7:0]

DOPB [0:0]

EEEB[7m]

DIA [0:0]

WEB
ENB
SSRB
CLKB
ADDRB [9:0]

DIB [15:0]

DOPB [1:0]

EB [15:0]

DIA [0:0]

L

WEB
ENB
SSRB
CLKB
ADDRB [8:0]

DIB [31:0]

DOPB [3:0]

EB [31:0]

DIPB [0:0] DIPB [1:0] DIPB [3:0]
X9466
RAMB16_S1_S1 through RAMB16_S1_S36 Representations
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 139

ISE 8.2i



SUXILINX®

RAMB16_Sm_Sn

WEA
ENA
SSRA

CLKA
ADDRA [12:0]

DIA [1:0]

WEB

ENB

SSRB

CLKB

ADDRB [12:0]

DIB [1:0]

WEA
ENA
SSRA
CLKA
ADDRA [12:0]

DIA [1:0]

WEB

ENB

SSRB

CLKB
ADDRB [9:0]
DIB [15:0]

DIPB [1:0]

WEB
ENB

SSRB

CLKB

ADDRB [10:0]
DIB [7:0]

DIPB [0:0]

RAMB16_S2_S2

L

RAMB16_S2_S18

RAMB16_S4_S9

DOA [1:0]
|___]

DOB [1:0]
| =

DOA [1:0]
| =]

DOPB [1:0]

EEEB[1&0]

DOA [3:0]
|___]

DOPB [0:0]

DOB [7:0]

WEA| RAMB16_S2_S4
ENA
SSRA

CLKA
ADDRA [12:0]

DIA [1:0]

L

WEB

ENB

SSRB

CLKB

ADDRB [11:0]

DIB [3:0]

WEA | RAMB16_S2_S36
ENA
SSRA
CLKA
ADDRA [12:0]

DIA [1:0]

WEB

ENB

SSRB
CLKB
ADDRB [8:0]
DIB [31:0]

DIPB [3:0]

WEA | RAMB16_S4_S18
ENA
SSRA
CLKA

ADDRA [11:0]

DIA [3:0]

WEB
ENB

SSRB
CLKB
ADDRB [9:0]
DIB [15:0]

DIPB [1:0]

DOA [1:0]
|___]

DOB [3:0]
|___]

DOA [1:0]
-

DOPB [3:0]

DOB [31:0]

DOA [3:0]
| =]

DOPB [1:0]

DOB [15:0]

WEA

ENA

SSRA |

CLKA

ADDRA [12:0]

RAMB16_S2_S9

DIA [1:0]

WEB]
ENB
SSRB|
CLKB
ADDRB [10:0]

DIB [7:0]

DIPB [0:0]

WEA | RAMB16_S4_S4
ENA |
SSRA
CLKA
ADDRA [11:0]

DIA [3:0]

WEB
ENB
SSRB

CLKB
ADDRB [11:0]

DIB [3:0]

WEA | RAMB16_S4_S36
ENA
SSRA
CLKA
ADDRA [11:0]

DIA [3:0]

WEB
ENB

SSRB
CLKB
ADDRB [8:0]
DIB [31:0]

DIPB [3:0]

RAMB16_S2_S2 through RAMB16_S4_S36 Representations

DOA [1:0]
| =]

DOPB [0:0]
DOB [7:0]

DOA [3:0]
]

DOB [3:0]
||

DOA [3:0]
|___]

DOPB [3:0]
DOB [31:0]

X9467

140

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAMB16_Sm_Sn

SUXILINX®

wea| RAMB16_s9_so

ENA

SSRA

CLKA
ADDRA [10:0]
DIA [7:0]
DIPA [0:0]

L

WEB
ENB

SSRB

CLKB

ADDRB [10:0]
DIB [7:0]

DIPB [0:0]

WEA | RAMB16_S18_S18

ENA

SSRA

CLKA
ADDRA [9:0]
DIA [15:0]

DIPA [1:0]

WEB

ENB

SSRB

CLKB
ADDRB [9:0]
DIB [15:0]

DIPB [1:0]

DOPA [0:0]
DOA [7:0]

DOPB [0:0]
DOB [7:0]

DOPA [1:0]
DOA [15:0]

DOPB [1:0]

EEEB[1&0]

wEeA | RAMB16_s9_s18
ENA
SSRA

CLKA
ADDRA [10:0]

DIA [7:0]

DIPA [0:0]

WEB
ENB

SSRB
CLKB
ADDRB [9:0]
DIB [15:0]

DIPB [1:0]

WEA | RAMB16_S18_S36

ENA

SSRA

CLKA
ADDRA [9:0]
DIA [15:0]

DIPA [1:0]

WEB
ENB

SSRB
CLKB
ADDRB [8:0]
DIB [31:0]

DIPB [3:0]

L

DOPA [0:0]
DOA [7:0]

DOPB [1:0]
DOB [15:0]

DOPA [1:0]

DOA [15:0]

DOPB [3:0]

Eiis[anO]

ADDRA [10:0]

WEA | RAMB16_S9_S36
ENA

SSRA

CLKA

DIA [7:0]
DIPA [0:0]

WEB

ENB

SSRB

CLKB
ADDRB [8:0]
DIB [31:0]

DIPB [3:0]

WEA | RAMB16_S36_S36

ENA

SSRA

CLKA
ADDRA [8:0]
DIA [31:0]

DIPA [3:0]

L

WEB
ENB

SSRB
CLKB
ADDRB [8:0]
DIB [31:0]

DIPB [3:0]

RAMB16_S9_S9 through RAMB16_S36_S36 Representations

DOPA [0:0]
DOA [7:0]

DOPB [3:0]
DOB [31:0]

DOPA [3:0]

EEEA[shOJ

DOPB [3:0]

EEEB[snO]

X9468

The RAMB16_Sm_Sn components listed in the following table are dual-ported
dedicated random access memory blocks with synchronous write capability. Each
block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits
wide have an additional 2048 bits of parity memory. Each port is independent of the

other while accessing the same set of 16384 data memory cells. Each port is

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

141



SXILINX® RAMB16_Sm_Sn

independently configured to a specific data width. The possible port and cell
configurations are listed in the following table.

Port A Port B
c Data Cells? |  Parity Address | Data Bus | Parity [DataCells?| Parity | Address | Data Bus| Parity
omponent

Cells” Bus Bus Cells? Bus Bus
RAMB16_S1_ | 16384 x 1 - (13:0) (0:0) - 16384 x 1 - (13:0) (0:0) -
S1
RAMB16_S1_ | 16384 x 1 - (13:0) (0:0) - 8192 x 2 - (12:0) (1:0) -
52
RAMB16_S1_ | 16384 x 1 - (13:0) (0:0) - 4096 x 4 - (11:0) (3:0) -
54
RAMB16_S1_ | 16384 x 1 - (13:0) (0:0) - 2048 x 8 | 2048x 1 (10:0) (7:0) (0:0)
59
RAMB16_S1_ | 16384 x 1 - (13:0) (0:0) - 1024 x 16 | 1024 x 2 (9:0) (15:0) (1:0)
518
RAMB16_S1_ | 16384 x 1 - (13:0) (0:0) - 512x32 | 512x4 (8:0) (31:0) (3:0)
536
RAMB16_S2_ | 8192x2 - (12:0) (1:0) - 8192 x 2 - (12:0) (1:0) -
52
RAMB16_S2_ | 8192x2 - (12:0) (1:0) - 4096 x 4 - (11:0) (3:0) -
54
RAMB16_52_ | 8192x2 - (12:0) (1:0) - 2048 x 8 | 2048 x 1 (10:0) (7:0) (0:0)
59
RAMB16_S2_ | 8192x2 - (12:0) (1:0) - 1024 x 16 | 1024 x 2 (9:0) (15:0) (1:0)
518
RAMB16_S2_ | 8192x2 - (12:0) (1:0) - 512x32 | 512x4 (8:0) (31:0) (3:0)
536
RAMB16_54_ | 4096 x 4 - (11:0) (3:0) - 4096 x 4 - (11:0) (3:0) -
54
RAMB16_S4_ | 4096 x 4 - (11:0) (3:0) - 2048 x 8 | 2048x 1 (10:0) (7:0) (0:0)
59
RAMB16_54_ | 4096 x 4 - (11:0) (3:0) - 1024 x 16 | 1024 x 2 (9:0) (15:0) (1:0)
518
RAMB16_54_ | 4096 x 4 - (11:0) (3:0) - 512x32 | 512x4 (8:0) (31:0) (3:0)
536
RAMB16_S9_ | 2048x8 | 2048 x 1 (10:0) (7:0) (0:0) 2048 x 8 | 2048x 1 (10:0) (7:0) (0:0)
S9
RAMB16_S9_ | 2048x8 | 2048 x 1 (10:0) (7:0) (0:0) 1024 x 16 | 1024 x 2 (9:0) (15:0) (1:0)
518
RAMB16_S9_ | 2048x8 | 2048 x 1 (10:0) (7:0) (0:0) 512x32 | 512x4 (8:0) (31:0) (3:0)
536
RAMB16_S18 | 1024 x 16 | 1024 x2 (9:0) (15:0) (1:0) 1024 x 16 | 1024 x 2 (9:0) (15:0) (1:0)
_S18
RAMB16_S18 | 1024 x 16 | 1024 x2 (9:0) (15:0) (1:0) 512x32 | 512x4 (8:0) (31:0) (3:0)
_S36

142 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAMB16_Sm_Sn

SUXILINX®

RAMB16_536
_S36

Port A Port B

512 x 32

512x 4

(8:0) (31:0) (3:0) | 512x32 | 512x4 (8:0) (31:0) (3:0)

“Depth x Width

Each port is fully synchronous with independent clock pins. All port A input pins
have setup time referenced to the CLKA pin and its data output bus DOA has a clock-
to-out time referenced to the CLKA. All port B input pins have setup time referenced
to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the
CLKB.

The enable ENA pin controls read, write, and reset for port A. When ENA is Low, no
data is written and the outputs (DOA and DOPA) retain the last state. When ENA is
High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-
to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents
reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored
in the RAM address (ADDRA) is read during the Low-to-High clock transition. By
default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data
on the data inputs (DIA and DIPA) is loaded into the word selected by the write
address (ADDRA) during the Low-to-High clock transition and the data outputs
(DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for port B. When ENB is Low, no
data is written and the outputs (DOB and DOPB) retain the last state. When ENB is
High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-
to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents
reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored
in the RAM address (ADDRB) is read during the Low-to-High clock transition. By
default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on
the data inputs (DIB and PB) are loaded into the word selected by the write address
(ADDRB) during the Low-to-High clock transition and the data outputs (DOB and
DOPB) reflect the selected (addressed) word.

The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA,
ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an
inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block
and does not use a CLB resource.

Port A Truth Table

Inputs

Outputs

GSR |ENA

SSRA

WEA

ADD

RA DIA

CLKA DIPA DOA DOPA RAM Contents

Data RAM Parity RAM

INIT_A INIT_A No Chg No Chg

No Chg No Chg No Chg No Chg

SRVAL_A |SRVAL_A |No Chg No Chg

o|lo|lo|
| =o)X

== X X

| o X | X

= | x| =x
>
>
>

addr SRVAL_A |SRVAL_A |RAM(addr)

=>data

RAM(addr)
=>pdata

T addr | X X |RAM(addr) | RAM(addr) | No Chg No Chg

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com 143



SXILINX® RAMB16_Sm_Sn

Port A Truth Table
Inputs Outputs
GSR | ENA [SSRA|WEA | CLKA AR?AD DIA | DIPA DOA DOPA RAM Contents
0 1 0 1 T addr | data |pdata|NoChg! |NoChg! |RAM(addr) RAM(addr)
RAM RAM(addr) | =>data =>pdata
(addr)? 2
data? pdata3

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.
SRVAL_A=register value

addr=RAM address
RAM(addr)=RAM contents at address ADDR

data=RAM input data

pdata=RAM parity data

IWRITE_MODE_A=NO_CHANGE
2WRITE_MODE_A=READ_FIRST
SWRITE_MODE_A=WRITE_FIRST

Port B Truth Table

Inputs Outputs
GSR |ENB| SSRB | WEB |CLKB| ADDRB | DIB | DIPB DOB DOPB RAM Contents
Data RAM Parity RAM
1 X X X X X X X |INIT_B INIT_B No Chg No Chg
0 0 X X X X X X |NoChg |NoChg |NoChg No Chg
0 1 1 0 T X X X |SRVAL_B |SRVAL_B |No Chg No Chg
0 1 1 1 T addr data | pdata |SRVAL_B |SRVAL_B |RAM(addr) RAM(addr)
=>data =>pdata
0 1 0 0 T addr X X |RAM(add |RAM(add |No Chg No Chg
r) r)
144 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



RAMB16_Sm_Sn

SUXILINX®

Port B Truth Table

Inputs Outputs
GSR |ENB| SSRB | WEB |CLKB | ADDRB | DIB | DIPB DOB DOPB RAM Contents
0 1 0 1 T addr data | pdata [No Chg! |NoChg! |RAM(addr) RAM(addr)
RAM RAM(add |=>data =>pdata
(addr)? r)?
data’ pdata3

GSR=Global Set Reset

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.
SRVAL_B=register value

addr=RAM address

RAM(addr)=RAM contents at address ADDR
data=RAM input data

pdata=RAM parity data

IWRITE_MODE_B=NO_CHANGE
2WRITE_MODE_B=READ_FIRST
SWRITE_MODE_B=WRITE_FIRST

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme
that is dependent on the width of the port. For all port widths, 16384 memory cells are
available for data as shown in the “Port Address Mapping for Data” table below. For
9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in
“Port Address Mapping for Parity” table below. The physical RAM location that is
addressed for a particular width is determined from the following formula.

Start=( (ADDR port+1l) * (Widthport)) -1

End= (ADDRport) * (Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data

Width Port Data Addresses

1 [16384 31\30 29\28 27\26 25\24 23\22 21\20 19\18 17\16 15\14 13\12 11\10 09\08 07\06 05\04 03\02 01\00

2 18192 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4096 07 06 05 04 03 02 01 00

8 2048 03 02 01 00

16 (1024 01 00

32 [512 00

Spartan-3E Libraries Guide for HDL Designs 145

ISE 8.2i

www.Xilinx.com



SUXILINX®

RAMB16_Sm_Sn

Port Address Mapping for Parity

Parity Width

Port Parity Addresses

1

2048

Ceee 03 \ 02 01 00

2

1024

<----- 01 00

4

512

L 00

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory
contents of a RAMB16 during device configuration. The initialization of each
RAMB16_Sm_5n is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64
hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory
during device configuration or assertion. The initialization of the parity memory for
ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00
through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial
strings are padded with zeros to the left.

See the Constraints Guide for more information on these attributes.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3E, each bit in an output register can be initialized at power on (when GSR
is high) to either a 0 or 1. In addition, the initial state specified for power on can be
different than the state that results from assertion of a set/reset. Four properties
control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B,
SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at
power on for port A and the INIT_B attribute specifies the value for port B. You can
use the SRVAL_A attribute to define the state resulting from assertion of the SSR
(set/reset) input on port A. You can use the SRVAL_B attribute to define the state
resulting from assertion of the SSR input on port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization
value as a hexadecimal String. The value is dependent upon the port width. For
example, for a RAMB16_S1_54 with port A width equal to 1 and port B width equal to
4, the port A output register contains 1 bit and the port B output register contains 4
bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For
port B, the output register contains 4 bits. In this case, you can use INIT_B or
SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the
output register.

For those ports that include parity bits, the parity portion of the output register is
specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B
value.

The INIT and SRVAL attributes default to zero if they are not set by the user.

See the Constraints Guide for more information on these attributes.

146

www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



RAMB16_Sm_Sn

SUXILINX®

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of port A
for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for port B. By
default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This
means that input is read, written to memory, and then passed to output. You can set
the write mode for port A and/or port B to READ_FIRST to read the memory
contents, pass the memory contents to the outputs, and then write the input to
memory. Or, you can set the write mode to NO_CHANGE to have the input written to
memory without changing the output. The “Port A and Port B Conflict Resolution”
section describes how read /write conflicts are resolved when both port A and port B
are attempting to read /write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3E block SelectRAM is True Dual-Port RAM that allows both ports to
simultaneously access the same memory cell. When one port writes to a given
memory cell, the other port must not address that memory cell (for a write or a read)
within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port
RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA |WEB | CLKA CLKB | DIA | DIB | DIPA | DIPB | DOA DOB | DOPA | Dopg  Data | Parity
RAM Ram
0 0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM | No Chg | No Chg
1 0 T T DIA | DIB | DIPA | DIPB |NoChg | X No Chg X DIA DIPA
0 1 T T DIA | DIB | DIPA | DIPB X |NoChg| X No Chg | DIB DIPB
1 1 T T DIA | DIB | DIPA | DIPB |NoChg| NoChg| NoChg NoChg| X X
WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST
WEA WEB CLKA | CLKB | DIA | DIB | DIPA | DIPB  DOA | DOB | DOPA  Dopg | Data | Parity
RAM Ram
0 0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM |No Chg | No Chg
1 0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM DIA DIPA
0 1 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM DIB DIPB
1 1 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM X X
WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST
WEA WEB CLKA | CLKB | DIA | DIB | DIPA | DIPB  DOA | DOB | DOPA  Dopg | Data | Parity
RAM Ram
0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM | No Chg | No Chg
1 T T DIA | DIB | DIPA | DIPB | DIA X DIPA X DIA DIPA
Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 147

ISE 8.2i




SXILINX® RAMB16_Sm_Sn

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA WEB CLKA | CLKB | DIA | DIB | DIPA @ DIPB | DOA | DOB | DOPA | Dopp A Data | Parity
RAM Ram
0 1 T T DIA | DIB | DIPA | DIPB | X | DIB X DIPB | DIB | DIPB

1 1 T T DIA | DIB | DIPA | DIPB X X X X X X

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA WEB | CLKA | CLKB | DIA | DIB | DIPA | DIPB | DOA | DOB | DOPA | DOPB g:t; '::;:1"
0 0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM |No Chg | No Chg
1 0 T T DIA | DIB | DIPA | DIPB |NoChg| X |NoChg 6 X DIA | DIPA
0 1 T T DIA | DIB | DIPA | DIPB | RAM |RAM | RAM | RAM | DIB | DIPB
1 1 T T DIA | DIB | DIPA | DIPB |NoChg| X |NoChg 6 X DIB DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA WEB | CLKA | CLKB | DIA | DIB | DIPA | DIPB | DOA | DOB | DOPA = DOPB g:t; ':‘;:1"
0 0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM |No Chg | No Chg
1 0 T T DIA | DIB | DIPA | DIPB |NoChg| X |NoChg 6 X DIA | DIPA
0 1 T T DIA | DIB | DIPA | DIPB X DIB X DIPB | DIB | DIPB
1 1 T T DIA | DIB | DIPA | DIPB |NoChg| X |NoChg 6 X X X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA WEB CLKA CLKB | DIA  DIB | DIPA | DIPB | DOA | DOB | DOPA | DoOpPB @ Datd | Parity
RAM Ram
0 0 T T DIA | DIB | DIPA | DIPB | RAM | RAM | RAM | RAM |No Chg | No Chg
1 0 ) T DIA DIB DIPA DIPB | RAM | RAM | RAM RAM DIA DIPA
0 1 T T DIA | DIB | DIPA | DIPB X DIB X DIPB DIB DIPB
1 1 ) ) DIA DIB DIPA DIPB X DIB X DIPB DIA DIPA
Usage
These design elements can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.
148 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



RAMB16_Sm_Sn

SUXILINX®

Available Attributes

Attribute

Type

Allowed
Values

Default

Description

INIT_00 To
INIT_3F

Binary/Hex-
adecimal

Any

All zeros

Specifies the initial contents of
the data portion of the RAM
array.

INIT_A

Binary/Hex-
adecimal

Any

All zeros

Identifies the initial value of the
DOA /DOB output port after
completing configuration. For
Type, the bit width is dependent
on the width of the A or B port
of the RAM.

INIT_B

Binary /Hex-
adecimal

Any

All zeros

Identifies the initial value of the
DOA /DOB output port after
completing configuration. For
Type, the bit width is dependent
on the width of the A or B port
of the RAM.

INITP_00 To
INITP_07

Binary/Hex-
adecimal

Any

All zeros

Specifies the initial contents of
the parity portion of the RAM
array.

SIM_
COLLISION_
CHECK

String

“"ALL”,
"NONE”,
"WARNING”
, or
"GENERATE
_X_ONLY”

“"ALL”

Specifies the behavior during
simulation in the event of a data
collision (data being read or
written to the same address from
both ports of the Ram
simultaneously. "ALL" issues a
warning to simulator console
and generate an X or all
unknown data due to the
collision. This is the
recommended setting.
"WARNING" generates a
warning only and
"GENERATE_X_ONLY"
generates an X for unknown
data but won’t output the
occurrence to the simulation
console. "NONE" completely
ignores the error. It is suggested
to only change this attribute if
you can ensure the data
generated during a collision is
discarded.

SRVAL_A

Binary/Hex-
adecimal

Any

All zeros

Allows the individual selection
of whether the DOA/DOB
output port sets (go to a one) or
reset (go to a zero) upon the
assertion of the SSRA /SSRB pin.
For Type, the bit width is
dependent on the width of the A
or B port of the RAM.

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

149




SUXILINX®

RAMB16_Sm_Sn

Attribute

Type

Allowed
Values

Default

Description

SRVAL_B

Binary/Hex-
adecimal

Any

All zeros

Allows the individual selection
of whether the DOA/DOB
output port sets (go to a one) or
reset (go to a zero) upon the
assertion of the SSRA /SSRB pin.
For Type, the bit width is
dependent on the width of the A
or B port of the RAM.

WRITE_MODE
A

String

"WRITE_FIR
ST", "READ_
FIRST" or
"NO_
CHANGE”

"WRITE_
FIRST”

Specifies the behavior of the
DOA /DOB port upon a write
command to the respected port.
If set to "WRITE_FIRST", the
same port that is written to
displays the contents of the
written data to the outputs upon
completion of the operation.
"READ_FIRST" displays the
prior contents of the RAM to the
output port prior to writing the
new data. "NO_CHANGE"
keeps the previous value on the
output port and won’t update
the output port upon a write
command. This is the suggested
mode if not using the read data
from a particular port of the
RAM.

WRITE_MODE
B

String

"WRITE_
FIRST",
"READ_
FIRST" or
"NO_
CHANGE"”

"WRITE_
FIRST”

Specifies the behavior of the
DOA /DOB port upon a write
command to the respected port.
If set to "WRITE_FIRST", the
same port that is written to
displays the contents of the
written data to the outputs upon
completion of the operation.
"READ_FIRST" displays the
prior contents of the RAM to the
output port prior to writing the
new data. "NO_CHANGE"
keeps the previous value on the
output port and won’t update
the output port upon a write
command. This is the suggested
mode if not using the read data
from a particular port of the
RAM.

VHDL and Verilog Instantiation

For VHDL and Verilog coding examples for each configuration of this RAM, refer to
the ISE HDL Language Templates in the ISE Project Navigator software.

150

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i




RAMB16_Sm_Sn S XILINX®

For More Information
Consult the Spartan-3E Data Sheet.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 151
ISE 8.2i



SXILINX® RAMB16_Sm_Sn

152 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



RAMB16_Sn

SUXILINX®

RAMB16_Sn

Primitive: 16384-Bit Data Memory and 2048-Bit Parity Memory, Single-
Port Synchronous Block RAM with Port Width (n) Configured to 1, 2, 4,

9, 18, or 36 Bits

RAMB16_S1

SSR
CLK
ADDR [13:0]

DI [0:0]

DO [0:0]
| ___]

RAMB16_S9

SSR
CLK
ADDR [10:0]

DI [7:0]

DIP [0:0]

SSR
CLK
ADDR [12:0]

DI [1:0]

RAMB16_S2

DO [1:0]
| ___]

DOP [0:0]
SSR

CLK

ADDR [9:0]

DO [7:0]

DI [15:0]

DIP [1:0]

RAMB16_S18

DOP [1:0]

DO [15:0]

RAMB16_S1 through RAMB16_S36 Representations

RAMBI16_51, RAMB16_5S2, RAMB16_5S4, RAMB16_S9, RAMB16_518, and
RAMB16_S36 are dedicated random access memory blocks with synchronous write
capability. The block RAM port has 16384 bits of data memory. RAMB16_59,
RAMB16_518, and RAMB16_536 have an additional 2048 bits of parity memory. The
RAMB16_5n cell configurations are listed in the following table.

WE | RAMB16_S4

SSR

CLK
ADDR [11:0]

DO [3:0]
| ___]

DI [3:0]

RAMB16_S36
DOP [3:0]
SSR
CLK
ADDR [8:0]

DO [31:0]

DI [31:0]

DIP [3:0]

X9465

The enable (EN) pin controls read, write, and reset. When EN is Low, no data is

Component Data Cells Parity Cells Address Bus | Data Bus Parity Bus
Depth Width Depth Width
RAMB16_S1 16384 1 - - (13:0) (0:0) -
RAMB16_S2 8192 2 - - (12:0) (1:0) -
RAMB16_S4 4096 4 - - (11:0) (3:0) -
RAMB16_S9 2048 8 2048 1 (10:0) (7:0) (0:0)
RAMB16_518 1024 16 1024 2 (9:0) (15:0) (1:0)
RAMB16_536 512 32 512 4 (8:0) (31:0) (3:0)

written and the outputs (DO and DOP) retain the last state. When EN is High and
reset (SSR) is High, DO and DOP are set to SRVAL during the Low-to-High clock
(CLK) transition; if write enable (WE) is High, the memory contents reflect the data at
DI and DIP. When SSR is Low, EN is High, and WE is Low, the data stored in the RAM
address (ADDR) is read during the Low-to-High clock transition. The output value
depends on the mode. By default WRITE_MODE=WRITE_FIRST, when EN and WE

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i

www.Xilinx.com

151



SUXILINX®

RAMB16_Sn

are High and SSR is Low, the data on the data inputs (DI and DIP) is loaded into the
word selected by the write address (ADDR) during the Low-to-High clock transition.
See “Write Mode Selection” for information on setting the WRITE_MODE.

The above description assumes an active High EN, WE, SSR, and CLK. However, the
active level can be changed by placing an inverter on the port. Any inverter placed on
a RAMB16 port is absorbed into the block and does not use a CLB resource.

Inputs Outputs
GSR | EN [SSR| WE |[CLK| ADDR | DI DIP DO DOP RAM Contents
Data RAM Parity RAM
1 X X X X X X X |INIT INIT No Chg No Chg
0 0 X X X X X X | No Chg No Chg No Chg No Chg
0 1 1 0 T X X X |SRVAL SRVAL No Chg No Chg
0 1 1 1 T addr | data | pdata [ SRVAL SRVAL RAM(addr) RAM(addr)
=>data =>pdata
0 1 0 0 T addr X X |RAM(addr) |RAM(addr) |No Chg No Chg
1 1 T addr | data | pdata [No Chg” No Chg? RAM(addr) RAM(addr)
RAM RAM(addr) | =>data =>pdata
(addr)? b
data® pdata©

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.
SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address

RAM(addr)=RAM contents at address ADDR
data=RAM input data
pdata=RAM parity data

TWRITE_MODE=NO_CHANGE
YWRITE_MODE=READ_FIRST
‘WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory
contents of a RAMB16 during device configuration. The initialization of each
RAMB16_5n is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex
values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory
during device configuration or assertion. The initialization of the parity memory for
ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00
through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial
strings are padded with zeros to the left.

See the Constraints Guide for more information on these attributes.

152

www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



RAMB16_Sn

SUXILINX®

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3E, each bit in the output register can be initialized at power on to either a
0 or 1. In addition, the initial state specified for power on can be different than the
state that results from assertion of a set/reset. Two types of properties control
initialization of the output register for a single-port RAMB16: INIT and SRVAL. The
INIT attribute specifies the output register value at power on. You can use the SRVAL
attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal
String. The value is dependent upon the port width. For example, for a RAMB16_51
with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or
SRVAL value can only be specified as a 1 or 0. For RAMB16_54 with port width equal
to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal
value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is
specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by the user.

Write Mode Selection

The WRITE_MODE attribute controls RAMB16 memory and output contents. By
default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read,
written to memory, and then passed to output. You can set the WRITE_MODE to
READ_FIRST to read the memory contents, pass the memory contents to the outputs,
and then write the input to memory. Or, you can set the WRITE_MODE to
NO_CHANGE to have the input written to memory without changing the output.

Usage

This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.

Available Attributes

Attribute Type Allowed Values Default Description

INIT Binary/Hexa- |Any All zeros Identifies the initial
decimal value of the DO
output port after
completing
configuration. The bit
width is dependent
on the width of the A
or B port of the RAM.

INIT_00 ? Binary/Hexa- |Any All zeros Specifies the initial
INIT_3F decimal contents of the data
portion of the RAM
array.

INITP_00 ? Binary/Hexa- |Any All zeros Specifies the initial
INITP_07 decimal contents of the parity
portion of the RAM
array.

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 153

ISE 8.2i



SXILINX® RAMB16_Sn

Attribute Type Allowed Values Default Description
SRVAL Binary/Hexa- |Any All zeros Allows the individual
decimal selection of whether
the DO output port

sets (go to a one) or
reset (go to a zero)
upon the assertion of
the SSR pin. The bit
width is dependent

on the width of the A

or B port of the RAM.

WRITE_ String "WRITE_FIRST", "WRITE_ Specifies the behavior
MODE "READ_FIRST" or FIRST” of the DO port upon a
"NO_CHANGE” write command to the

respected port. If set
to "WRITE_FIRST",
the same port that is
written to displays the
contents of the
written data to the
outputs upon
completion of the
operation.
"READ_FIRST"
displays the prior
contents of the RAM
to the output port
prior to writing the
new data.
"NO_CHANGE"
keeps the previous
value on the output
port and won't
update the output
port upon a write
command. This is the
suggested mode if not
using the read data
from a particular port
of the RAM.

VHDL and Verilog Instantiation

For VHDL and Verilog coding examples for each configuration of this RAM, refer to
the ISE HDL Language Templates in the ISE Project Navigator software.

For More Information

Consult the Spartan-3E Data Sheet.

154 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



ROM16X1 S XILINX®

ROM16X1
Primitive: 16-Deep by 1-Wide ROM

ROM16X1 is a 16-word by 1-bit read-only memory. The data output (O) reflects the

word selected by the 4-bit address (A3 — A0). The ROM is initialized with the INIT =
ROM16X1| o . . ) . . L
A0 | | Y value parameter during configuration. The value consists of four hexadecimal digits
At | that are written into the ROM from the most-significant digit A=FH to the least-
A2 significant digit A=0H. For example, the INIT=10A7 parameter produces the data
A3 stream:
0001 0000 1010 0111
X137 An error occurs if the INIT=value is not specified.
Usage
This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values Default Description
INIT Hexa- Any 16-bit value. | All zeros Specifies the contents of the
decimal ROM.
VHDL Instantiation Template
-- ROM16X1 : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (ROM16X1_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- ROM16X1: 16 x 1 Asynchronous Distributed => LUT ROM
-- Xilinx HDL Libraries Guide Version 8.11i

ROM16X1_inst : ROM16X1
generic map (
INIT => X"0000")

port map (
o => 0O, -- ROM output
A0 => A0, -- ROM address[0]
Al => Al, -- ROM address|[1]
A2 => A2, -- ROM address|[2]
A3 => A3 -- ROM address[3]

)

-- End of ROM16X1_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 155
ISE 8.2i



SUXILINX®

ROM16X1

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Code

ROM16X1 : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (ROM16X1_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connect.
<----- Cut code below this line---->

// ROM16X1: 16 x 1 Asynchronous Distributed (LUT) ROM
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

ROM16X1 #(

.INIT(16'h0000) // Contents of ROM
) ROM16X1_inst (

.0(0), // ROM output

.A0(A0), // ROM address[0]

.Al1(Al), // ROM address[1]

A2 (A2), // ROM address|[2]

A3(A3) // ROM address[3]
)

// End of ROM16X1_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

156 www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



ROM32X1

SUXILINX®

ROM32X1
Primitive: 32-Deep by 1-Wide ROM

ROMB32X1 is a 32-word by 1-bit read-only memory. The data output (O) reflects the

ROM32X1 word selected by the 5-bit address (A4 — A0). The ROM is initialized with the INIT =
A0 | O value parameter during configuration. The value consists of eight hexadecimal digits
A1 that are written into the ROM from the most-significant digit A=1FH to the least-
A2 significant digit A=00H. For example, the INIT=10A78F39 parameter produces the
A3 data stream:
A4 |
0001 0000 1010 0111 1000 1111 0011 1001
X4130 An error occurs if the INIT=value is not specified.
Usage
This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values Default Description
INIT Hexa- Any 32-bit value. All zeros Specifies the contents of
decimal the ROM.
VHDL Instantiation Template
-- ROM32X1 : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (ROM32X1_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- ROM32X1: 32 x 1 Asynchronous Distributed => LUT ROM
-- Xilinx HDL Libraries Guide Version 8.11i

ROM32X1_inst : ROM32X1
generic map (
INIT => X"00000000")

port map (
o => 0O, -- ROM output
A0 => A0, -- ROM address[0]
Al => Al, -- ROM address|[1]
A2 => A2, -- ROM address|[2]
A3 => A3, -- ROM address[3]
A4 => A4 -- ROM address|[4]

)
-- End of ROM32X1_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

157



SUXILINX®

ROM32X1

/7
/7
//
/7
/7
//
/7

//

Verilog Instantiation Code

ROM32X1 : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (ROM32X1_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connect.
<----- Cut code below this line---->

// ROM32X1: 32 x 1 Asynchronous Distributed (LUT) ROM
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

ROM32X1 #(
.INIT(32'h00000000) // Contents of ROM
) ROM32X1_inst (
.0(0), // ROM output
.A0(A0), // ROM address[0]
.Al1(Al), // ROM address[1]
A2 (A2), // ROM address|[2]
(A3), // ROM address[3]
.A4(A4) // ROM address[4]
)

// End of ROM32X1_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

158 www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



ROM64X1

SUXILINX®

ROM64X1

Primitive: 64-Deep by 1-Wide ROM

ROMS64X1 is a 64-word by 1-bit read-only memory. The data output (O) reflects the

Ao | ROM64X1 | o word selected by the 6-bit address (A5 — A0). The ROM is initialized with an INIT =
A1 value parameter during configuration. The value consists of 16 hexadecimal digits
A2 that are written into the ROM from the most-significant digit A=FH to the least-
A3 significant digit A=0H.
LLE An error occurs if the INIT=value is not specified.
A5
X9730 Usage
This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values Default Description
INIT Hexa- Any 64-bit value. All zeros Specifies the contents of the
decimal ROM.
VHDL Instantiation Template
-— ROM64X1 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (ROM64X1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- ROM64X1: 64 x 1 Asynchronous Distributed => LUT ROM
-- FPGAs.
-- Xilinx HDL Libraries Guide Version 8.11i

ROM64X1_inst : ROM64X1
generic map (
INIT => X"0000000000000000")

port map (

o => 0O, -- ROM output

A0 => A0, -- ROM address[0]
Al => Al, -- ROM address|[1]
A2 => A2, -- ROM address[2]
A3 => A3, -- ROM address[3]
A4 => A4, -- ROM address|[4]
A5 => A5 -- ROM address|[5]

)

-- End of ROM64X1_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com
ISE 8.2i

159



SUXILINX®

ROM64X1

/7
/7
//
/7
/7
//
/7

//

/7

Verilog Instantiation Code

ROM64X1 In order to incorporate this function into the design,

Verilog the following instance declaration needs to be placed

instance in the body of the design code. The instance name
declaration (ROM64X1_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connect.
<----- Cut code below this line---->

// ROM64X1: 64 x 1 Asynchronous Distributed (LUT) ROM
// FPGAs.
Xilinx HDL Libraries Guide Version 8.11

ROM64X1 #(
.INIT(64'h0000000000000000) // Contents of ROM
) ROM64X1_inst (
.0(0), // ROM output
.A0(A0), // ROM address[0]
.Al(Al), // ROM address[1]
A2), // ROM address[2]
A3), // ROM address[3]
A4), // ROM address[4]
A5) // ROM address[5]
)

// End of ROM64X1_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

160 www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



ROM128X1

SUXILINX®

ROM128X1

Primitive: 128-Deep by 1-Wide ROM
ROM128X1 is a 128-word by 1-bit read-only memory. The data output (O) reflects the
Ao | ROM128X1| o word selected by the 7-bit address (A6 — A0). The ROM is initialized with an INIT =
Al value parameter during configuration. The value consists of 32 hexadecimal digits
A2 that are written into the ROM from the most-significant digit A=FH to the least-
A3 significant digit A=0H.
A4 . . el
as An error occurs if the INIT=value is not specified.
A6
Usage
X9731 . . . . .
This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values Default Description
INIT Hexa- Any 128-bit value. All zeros Specifies the contents of
decimal the ROM.
VHDL Instantiation Template
--  ROM128X1 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (ROM128X1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the

-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-- ROM128X1:

-- FPGAs.

128 x 1 Asynchronous Distributed

-- Xilinx HDL Libraries Guide Version 8.11i

ROM128X1_inst
generic map (
INIT => X"00000000000000000000000000000000")

port map

)

-- End of ROM128X1_inst instantiation

(0]

AQ
Al
A2
A3
Ad
A5
A6

(

=> 0,

=>
=>
=>
=>
=>
=>
=>

A0,
Al,
A2,
A3,
A4,
A5,
A6

ROM128X1

ROM
ROM
ROM
ROM

- ROM
- ROM

ROM
ROM

output

address[0]
address|[1]
address[2]
address[3]
address|[4]
address|[5]
address[6]

=> LUT ROM

Cut code below this line and paste into the architecture body---->

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

161



SUXILINX®

ROM128X1

/7
/7
//
/7
/7
//
/7

//

ROM128X1
Verilog
instance
declaration
code
and outputs must be connect.
<----- Cut code below this line---->

Verilog Instantiation Code

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(ROM128X1_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and

connect this function to the design.

// ROM128X1: 128 x 1 Asynchronous Distributed (LUT) ROM

// Xilinx HDL Libraries Guide Version 8.11i

.INIT(128'h00000000000000000000000000000000)

// FPGAs.

ROM128X1 #(

) ROM128X1_ins
.0(0), //
A0 (A0), //
LALl(AL), //
LA2(A2), //
A3 (A3), //
AL (ALY, //
.A5(A5), //
A6 (A6) //

)

// End of ROM128X1_inst instantiation

£ (
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM

output

address[0]
address[1]
address|[2]
address[3]
address[4]
address|[5]
address[6]

For More Information

Consult the Spartan-3E Data Sheet.

All inputs

// Contents of ROM

162

www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



ROM256X1

SUXILINX®

ROM256X1
Primitive: 256-Deep by 1-Wide ROM

Ao |
A1 |
A2 |
A3 |
A4 |
As |
A6 |
A7 |

ROM256X1

-= ROM256X1
VHDL

-- instance

-- declaration
code

- Library
-- declaration
for
-- Xilinx
-- primitives

X9732

ROM256X1 is a 256-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 8-bit address (A7— A0). The ROM is initialized with an
INIT=value parameter during configuration. The value consists of 64 hexadecimal
digits that are written into the ROM from the most-significant digit A=FH to the least-
significant digit A=0H.

An error occurs if the INIT=value is not specified.

Usage

This design element should be instantiated rather than inferred.

Available Attributes

Attribute Type Allowed Values Default Description
INIT Hexa- Any 256-bit value. All zeros Specifies the contents of
decimal the ROM.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (ROM256X1_inst) and/or the port declarations

after

the "=>" assignment maybe changed to properly

reference and connect this function to the design.
All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be

added

before the entity declaration. This library

contains the component declarations for all Xilinx
primitives and points to the models that are used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-- ROM256X1:

-- FPGAs.

Cut code below this line and paste into the architecture body---->

256 x 1 Asynchronous Distributed => LUT ROM

-- Xilinx HDL Libraries Guide Version 8.11i

ROM256X1_inst
generic map (

ROM256X1

INIT => X"0000000000000000000000000000000000000000000000000000000000000000")

port map (
o => 0O, -- ROM output
A0 => A0, -- ROM address[0]
Al => Al, -- ROM address|[1]
A2 => A2, -- ROM address[2]
A3 => A3, -- ROM address[3]
A4 => A4, -- ROM address|[4]
A5 => A5, -- ROM address|[5]
A6 => A6 -- ROM address[6]
A7 => A7 -- ROM address|[7]

)

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 163

ISE 8.2i



SXILINX® ROM256X1

-- End of ROM256X1_inst instantiation

Verilog Instantiation Code

ROM256X1 : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (ROM256X1_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connect.
<--—--- Cut code below this line---->

// ROM256X1: 256 x 1 Asynchronous Distributed (LUT) ROM
// FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

ROM256X1 # (

.INIT(256'h0000000000000000000000000000000000000000000000000000000000000000) // Contents of ROM
) ROM256X1_inst (

.0(0), // ROM output

.A0(A0), // ROM address[0]

Al(Al), // ROM address[1]
A2 (A2), // ROM address[2]
A3 (A3), // ROM address[3]
A4 (A4), // ROM address(4]
A5(A5), // ROM address[5]
A6(A6) // ROM address[6]
A7(A7) // ROM address[7]

)

// End of ROM256X1_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet.

164 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i



SRLC16E

SUXILINX®

SRLC16E

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Carry and

Clock Enable

b [ SAcTeE SRLCI16E is a shift register look up table (LUT) with carry and clock enable. The

E| a inputs A3, A2, Al, and A0 select the output length of the shift register. The shift
CE> E5 register can be of a fixed, static length or it can be dynamically adjusted.

A0 The shift register LUT contents are initialized by assigning a four-digit hexadecimal
A1 number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A2 ] significant bit. If an INIT value is not specified, that value defaults to a value of four
A3 zeros (0000) so that the shift register LUT is cleared during configuration.

X9298 The data (D) is loaded into the first bit of the shift register during the Low-to-High
clock (CLK) transition. When CE is High, during subsequent Low-to-High clock
transitions, data is shifted to the next highest bit position as new data is loaded. The
data appears on the Q output when the shift register length determined by the
address inputs is reached.

The Q15 output is available for the user to cascade multiple shift register LUTs to
create larger shift registers.
Inputs Output
Am CLK CE D Q Q15
Am X 0 X Q(Am) Q(15)
Am X 1 X Q(Am) Q(15)
Am ) 1 D Q(Am-1) Q15
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values Default Description
INIT 16-Bit 16-Bit Hexadecimal | 16'h0000 Sets the initial value of
Hexa- content and output of
decimal shift register after
configuration
VHDL Instantiation Template
-- SRLC16E : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (SRL16E_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be

-= for

: added before the entity declaration.

This library

Spartan-3E Libraries Guide for HDL Designs

ISE 8.2i

www.Xilinx.com

165



SUXILINX®

SRLC16E

-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that are used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <===== Cut code below this line and paste into the architecture body---->

-- SRLC16E: 16-bit cascable shift register LUT with clock enable operating on posedge of clock

-- FPGAs.
-- Xilinx HDL Libraries Guide version 8.11

SRLC16E_inst : SRLC16E
generic map (
INIT => X"0000")

port map (
Q => Q, -- SRL data output
Q15 => Q15, -- Carry output (connect to next SRL)
A0 => A0, -- Select[0] input
Al => Al, -- Select[1l] input
A2 => A2, -- Select[2] input
A3 => A3, -- Select[3] input
CE => CE, -- Clock enable input
CLK => CLK, -- Clock input
D =>D -- SRL data input

)

-- End of SRLC16E_inst instantiation

Verilog Instantiation Code

// SRLC16E : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (SRL16E_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// SRLC16E: 16-bit cascable shift register LUT with clock enable operating on posedge of clock

// FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

SRLC16E # (
.INIT(16'h0000) // Initial Value of shift Register
) SRLC16E_inst (

.Q(Q), // SRL data output

.Q15(Q15), // Carry output (connect to next SRL)
A0 (A0), // Select[0] input

LAl (AL), // Select[l] input

A2 (A2), // Select[2] input

A3 (A3), // Select[3] input

.CE(CE), // Clock enable input

.CLK (CLK) , // Clock input

.D(D) // SRL data input

)

// End of SRLC16E_inst instantiation

For More Information
Consult the Spartan-3E Data Sheet.

166 www.Xilinx.com

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



STARTUP_SPARTANSE S XILINX®

STARTUP_SPARTANSE

Primitive: Spartan-3E User Interface to the GSR, GTS, Configuration
Startup Sequence and Multi-Boot Trigger Circuitry

The STARTUP_SPARTANSE component allows the connection of ports, or user
circuitry, to control certain dedicated circuitry and routes within the FPGA. Signals

GSR

GTS
MBT
CLK

STARTUP_SPARTANSE

connected to the GSR port of this component can control the global set/reset (referred
to as GSR) of the device. The GSR net connects to all registers in the device and places
the registers into their initial value state. Connecting a signal to the GTS port connects
that port to the dedicated route controlling the 3-state outputs of every pin in the
device. Connecting a clock signal to the CLK input allows the startup sequence after
configuration to be synchronized to a user defined clock. The MBT (Multi-Boot

-- STARTUP_SPARTAN3E :

VHDL

-— instance
-= declaration

code

Library

-= declaration

for
Xilinx

-— primitives

Trigger) pin allows the triggering of a new configuration.

X10235

Usage

The STARTUP_SPARTANS3E component must be instantiated to be incorporated into
a design. Do not connect any input not needed for the design.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (STARTUP_SPARTAN3E_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
connect this function to the design. Delete or comment
out inputs/outs that are not necessary.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that are used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

---Cut code below this line and paste into the architecture body---->

-- STARTUP_SPARTAN3E: Startup primitive for GSR, GTS, startup sequence

control and Multi-Boot Configuration. Spartan-3E

-- Xilinx HDL Libraries Guide version 8.11

STARTUP_SPARTAN3E_inst : STARTUP_SPARTAN3E

port map (
CLK => CLK, -- Clock input for start-up sequence
GSR => GSR_PORT, -- Global Set/Reset input (GSR cannot be used for the port name)

GTS => GTS_PORT

-- Global 3-state input (GTS cannot be used for the port name)

MBT => MBT -- Multi-Boot Trigger input

)

-- End of STARTUP_SPARTAN3E_inst instantiation

// STARTUP_SPARTAN3E

/7

Verilog

// instance
// declaration

/7

code

Verilong Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the body of the design code. The instance name
(STARTUP_SPARTAN3E_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 167

ISE 8.2i



SXILINX® STARTUP_SPARTANSE

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->

// STARTUP_SPARTAN3E: Startup primitive for GSR, GTS, startup sequence control
// and Multi-Boot Configuration Trigger. Spartan-3E
// Xilinx HDL Libraries Guide Version 8.1i

STARTUP_SPARTAN3E STARTUP_SPARTAN3E_inst (
.CLK(CLK) , // Clock input for start-up sequence
.GSR(GSR_PORT), // Global Set/Reset input (GSR can not be used as a port name)
.GTS(GTS_PORT), // Global 3-state input (GTS can not be used as a port name)
.MBT (MBT) // Multi-Boot Trigger input

)

// End of STARTUP_SPARTAN3E_inst instantiation

For More Information

Consult the Spartan-3E Data Sheet. Also see the Synthesis and Verification Design
Guide for more information on using the GSR and GTS signals of the
STARTUP_SPARTANS3E component.

168 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



XORCY S XILINX®

XORCY

Primitive: XOR for Carry Logic with General Output

XORCY is a special XOR with general O output used for generating faster and smaller

arithmetic functions.
LI \ o
cl |
—] Usage
X8410 Its O output is a general interconnect. See also “XORCY_D”and “XORCY_L".
VHDL Instantiation Code
-— XORCY : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (XORCY_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that are used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- XORCY: Carry-Chain XOR-gate with general output
-- Xilinx HDL Libraries Guide version 8.11

XORCY_inst : XORCY

port map (
0 => 0, -- XOR output signal
CI => CI, -- Carry input signal
LT => LI -- LUT4 input signal

)

-- End of XORCY_inst instantiation

Verilog Instantiation Code

// XORCY : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (XORCY_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <=-==== Cut code below this line---->

// XORCY: Carry-Chain XOR-gate with general output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i

XORCY XORCY_inst (
.0(0), // XOR output signal
.CI(CI), // Carry input signal
.LI(LI) // LUT4 input signal
)

// End of XORCY_inst instantiation

Spartan-3E Libraries Guide for HDL Designs www.xilinx.com 169
ISE 8.2i



SXILINX® XORCY

For More Information
Consult the Spartan-3E Data Sheet.

170 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



XORCY_D

SUXILINX®

XORCY_D

Primitive: XOR for Carry Logic with Dual Output

XORCY_D is a special XOR used for generating faster and smaller arithmetic

LO functions.
LI \
o Usage
Cl
7 XORCY_D has two, functionally identical outputs: O and LO. The O output is a
X8409 general interconnect. The LO output connects to another output within the same CLB
slice.
VHDL Instantiation Code
-— XORCY_D In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (XORCY_D_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <= Cut code below this line and paste into the architecture body---->

-- XORCY_D: Carry-Chain XOR-gate with local and general outputs
-- Xilinx HDL Libraries Guide Version 8.11

XORCY_D_inst XORCY_D
port map (
LO => LO, -- XOR local output signal
0 => 0, -- XOR general output signal
CI => CI, -- Carry input signal
LI => LI -- LUT4 input signal

)

-- End of XORCY_D_inst instantiation

Verilog Instantiation Code

// XORCY_D
// Verilog
// instance
// declaration

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(XORCY_D_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// XORCY_D: Carry-Chain XOR-gate with local and general outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

XORCY_D XORCY_D_inst (
.LO(LO), // XOR local output signal
.0(0), // XOR general output signal

Spartan-3E Libraries Guide for HDL Designs 171

ISE 8.2i

www.Xilinx.com



SXILINX® XORCY_D

.CI(CI), // Carry input signal
LI(LI) // LUT4 input signal
)

// End of XORCY_D_inst instantiation.

For More Information

Consult the Spartan-3E Data Sheet.

172 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



XORCY_L

SUXILINX®

XORCY_L

Primitive: XOR for Carry Logic with Local Output

XORCY_L is a special XOR with local LO output used for generating faster and

LO smaller arithmetic functions.
LI \
cl Usage
The LO t ts t th t within th CLB sli
e output connects to another output within e same slice.
X8404 tp tp
VHDL Instantiation Code
-- XORCY_L In order to incorporate this function into the design,
- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (XORCY_L_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that are used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-—  <==——- Cut code below this line and paste into the architecture body---->

-- XORCY_L: Carry-Chain XOR-gate with local
-- Xilinx HDL Libraries Guide Version 8.11i

=> direct-connect ouput

XORCY_L_inst XORCY_L

port map (
LO => LO, -- XOR local output signal
CI => CI, -- Carry input signal
LI => LI -- LUT4 input signal

)

-- End of XORCY_L_inst instantiation

Verilog Instantiation Code

// XORCY_L
// Verilog
// instance
// declaration

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(XORCY_L_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// XORCY_L: Carry-Chain XOR-gate with local
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i

(direct-connect) ouput

XORCY_L XORCY_L_inst (

.LO(LO), // XOR local output signal
.CI(CI), // Carry input signal
LI(LI) // LUT4 input signal

)

Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i

www.Xilinx.com

173



SXILINX® XORCY_L

// End of XORCY_L_inst instantiation.

For More Information
Consult the Spartan-3E Data Sheet.

174 www.xilinx.com Spartan-3E Libraries Guide for HDL Designs
ISE 8.2i



	Software Manuals
	Spartan-3E Libraries Guide for HDL Designs
	About this Guide
	Table of Contents
	Functional Categories
	Arithmetic Functions
	Clock Components
	Config/BSCAN Components
	I/O Components
	RAM/ROM
	Registers & Latches
	Shift Registers
	Slice/CLB Primitives

	About the Spartan-3E Design Elements
	BSCAN_SPARTAN3
	BUFG
	BUFGCE
	BUFGCE_1
	BUFGMUX
	BUFGMUX_1
	CAPTURE_SPARTAN3
	DCM_SP
	FDCPE
	FDRSE
	IBUF
	IBUFDS
	IBUFG
	IBUFGDS
	IDDR2
	IOBUF
	IOBUFDS
	KEEPER
	LDCPE
	LUT1, 2, 3, 4
	LUT1_L, LUT2_L, LUT3_L, LUT4_L
	LUT1_D, LUT2_D, LUT3_D, LUT4_D
	MULT_AND
	MULT18X18SIO
	MUXCY
	MUXCY_D
	MUXCY_L
	MUXF5
	MUXF5_D
	MUXF5_L
	MUXF6
	MUXF6_D
	MUXF6_L
	MUXF7
	MUXF7_D
	MUXF7_L
	MUXF8
	MUXF8_D
	MUXF8_L
	OBUF
	OBUFDS
	OBUFT
	OBUFTDS
	ODDR2
	PULLDOWN
	PULLUP
	RAM16X1D
	RAM16X1S
	RAM32X1D
	RAM32X1S
	RAM64X1S
	RAM128X1S
	RAMB16_Sm_Sn
	RAMB16_Sn
	ROM16X1
	ROM32X1
	ROM64X1
	ROM128X1
	ROM256X1
	SRLC16E
	STARTUP_SPARTAN3E
	XORCY
	XORCY_D
	XORCY_L



