
The xr16 Specifications
Version 0.6, December, 1999

(Work-in-progress)

Table of Contents

1 Introduction... 1
2 Instruction Set Architecture Specification .. 2

2.1 State .. 2
2.2 Instruction set summary .. 4
2.3 Instruction specification format .. 5
2.4 Instruction specifications .. 7

3 Assembly Language Specification.. 19
3.1 Transformations .. 19
3.2 Assembly directives .. 20
3.3 Assembly pseudo-instructions .. 21
3.4 Long word pseudo-operations... 23

4 Calling Conventions Specification.. 25
4.1 Register conventions ... 25
4.2 Argument and return value passing... 25
4.3 Stack frame ... 26
4.4 Variable argument functions ... 26

5 Systems Programming Specification .. 28
5.1 Interrupts ... 28

6 Implementation Specification ... 29
6.1 Core interface.. 29
6.2 Instruction timings .. 29
6.3 I/O Space... 29
6.4 Memory management unit .. 29

7 Glossary .. 31
8 Rationale ... 32
9 Revision History ... 33

9.1 Known spec errors .. 33

Editor: Jan Gray

Copyright  1999, 2000, Gray Research LLC. All Rights Reserved.
The contents of this file are subject to the XSOC License Agreement; you may not use this file except in
compliance with this license. See the LICENSE file.

XSOC, xr16, and xr32 are trademarks of Gray Research LLC.

The xr16 Specifications

1

1 Introduction
xr16 is a simple 16-bit reduced instruction set computer designed to run integer-only C programs. The xr16
design is optimized for an area-efficient pipelined implementation in a field-programmable gate array and
other gate- and interconnect-constrained environments. It also features compact 16-bit instructions.

This document provides specifications for the xr16:
• instruction set architecture;
• assembly language;
• C language calling conventions;
• systems programming architecture; and
• the first xr16 implementation.

The xr16 Specifications

2

2 Instruction Set Architecture Specification

2.1 State

The architectural (programmer-visible) state consists of the program counter, the register file, and memory,
which stores both data and instructions.

2.1.1 Data formats

Data are represented as 8-bit bytes, 16-bit words, or 32-bit long words:
typedef unsigned char Byte; /* 8 bits */
typedef unsigned Word; /* 16 bits */
typedef unsigned long Long; /* 32 bits */

2.1.2 Program counter

The 16-bit program counter pc stores the memory address of the next instruction to execute. The least-
significant bit of pc, pc0, is hardwired to 0.

Word pc;

On reset, pc is initialized to 0. As each instruction is executed, pc is automatically incremented by 2, so
instruction execution proceeds sequentially through memory. The branch instructions (br beq bne bc

bnc bv bnv blt bge ble bgt bltu bgeu bleu bgtu) may add a branch displacement to pc and
effect a program transfer. The jump instructions (jal call) load pc with the target effective address and
store the return address (the address of the next instruction) in a register.

On interrupt, pc is set to the address of the interrupt handler, and the address of the interrupted instruction
is stored in r14.

Therefore a jump instruction, or an interrupt, are the only mechanisms that read pc into a register.

2.1.3 Register file

xr16 has sixteen general purpose 16-bit integer registers, r0 through r15:
Word r[16];

r0 is hardwired to 0. It always reads as 0, and writes to r0 are ignored.

r13 is also called sp.

r14 is reserved as the interrupt return address and should neither be read nor written by application code.

r15 is a fully general purpose register, but it is also the implicit destination register of the call instruction.
Therefore it is typically used as the function return address register.

For more information on register usage conventions, see section 4, Calling Conventions.

Within the register file, a byte or word is stored in one 16-bit register. A long word is stored in a pair of
registers, rx and rx’. The less-significant 16-bits of the long word are stored in rx and the more-significant
16-bits in rx’. (See 3.4.)

2.1.4 Memory

The application memory address space consists of an array of up to 216 8-bit bytes. Byte sequences in
memory can also be interpreted as big endian 16-bit words and 32-bit long words.

The xr16 Specifications

3

Byte mem[];

load_byte(addr) := mem[addr];
load_word(addr) := (load_byte(addr) << 8) | load_byte(addr + 1);
load_long(addr) := (load_word(addr) << 16) | load_word(addr + 2);

Word addresses must be even (divisible by two.) Long word addresses must be divisible by four.

2.1.5 Instructions

All xr16 instructions are 16-bit words stored in memory, in big endian format, at even addresses.

xr16 has no condition codes; however, some instruction sequences, such as (imm, addi, bne), that is,
(immediate prefix, add immediate, branch not equal), are interlocked (not interruptible).

The xr16 Specifications

4

2.2 Instruction set summary

15 12 11 8 7 4 3 0 Instruction Effect(s)
0 rd ra rb add rd,ra,rb r[rd] = r[ra] + r[rb];
1 rd ra rb sub rd,ra,rb r[rd] = r[ra] - r[rb];
2 rd ra imm addi rd,ra,imm r[rd] = r[ra] + immed;
3 rd 0 rb and rd,rb r[rd] = r[rd] ∧ r[rb];
3 rd 1 rb or rd,rb r[rd] = r[rd] ∨ r[rb];
3 rd 2 rb xor rd,rb r[rd] = r[rd] ⊕ r[rb];
3 rd 3 rb andn rd,rb r[rd] = r[rd] ∧ ~r[rb];
3 rd 4 rb adc rd,rb r[rd] = r[rd] + r[rb] + t;
3 rd 5 rb sbc rd,rb r[rd] = r[rd] - r[rb] - t;
4 rd 0 imm andi rd,imm r[rd] = r[rd] ∧ immed;
4 rd 1 imm ori rd,imm r[rd] = r[rd] ∨ r[rb];
4 rd 2 imm xori rd,imm r[rd] = r[rd] ⊕ r[rb];
4 rd 3 imm andni rd,imm r[rd] = r[rd] ∧ ~immed;
4 rd 4 imm adci rd,imm r[rd] = r[rd] + immed + t;
4 rd 5 imm sbci rd,ra,imm r[rd] = r[rd] - immed - t;
4 rd 6 imm srli rd,imm r[rd] = r[rd] >> immed;
4 rd 7 imm srai rd,imm r[rd] = (signed)r[rd] >> immed;
4 rd 8 imm slli rd,imm r[rd] = r[rd] << immed;
4 rd 9 imm srxi rd,imm r[rd] = (t << 16-immed) | (r[rd] >> immed)
4 rd A imm slxi rd,imm r[rd] = (r[rd] << immed) | (t << (immed-1));
5 rd ra imm lw rd,imm(ra) r[rd] = load_word(r[ra] + immed);
6 rd ra imm lb rd,imm(ra) r[rd] = 015:8 || load_byte(r[ra] + immed);
8 rd ra imm sw rd,imm(ra) store_word(r[rd], r[ra] + immed);
9 rd ra imm sb rd,imm(ra) store_byte((Byte)r[rd], r[ra] + immed);
A rd ra imm jal rd,imm(ra) target = r[ra] + immed; r[rd] = pc; pc = target;
B 0 disp br label pc += 2×sign_ext(disp) + 2;
B 2 disp beq label if (==) pc += 2×sign_ext(disp) + 2;
B 3 disp bne label if (!=) pc += 2×sign_ext(disp) + 2;
B 4 disp bc label if (carry_sum(,)) pc += 2×sign_ext(disp) + 2;
B 5 disp bnc label if (!carry_sum(,)) pc += 2×sign_ext(disp) + 2;
B 6 disp bv label if (overflow_sum(,)) pc += 2×sign_ext(disp) + 2;
B 7 disp bnv label if (!overflow_sum(,)) pc += 2×sign_ext(disp) + 2;
B 8 disp blt label if ((signed)<) pc += 2×sign_ext(disp) + 2;
B 9 disp bge label if ((signed)>=) pc += 2×sign_ext(disp) + 2;
B A disp ble label if ((signed)<=) pc += 2×sign_ext(disp) + 2;
B B disp bgt label if ((signed)>) pc += 2×sign_ext(disp) + 2;
B C disp bltu label if ((unsigned)<) pc += 2×sign_ext(disp) + 2;
B D disp bgeu label if ((unsigned)>=) pc += 2×sign_ext(disp) + 2;
B E disp bleu label if ((unsigned)<=) pc += 2×sign_ext(disp) + 2;
B F disp bgtu label if ((unsigned)>) pc += 2×sign_ext(disp) + 2;
C imm12 call function r[15] = pc; pc = imm1211:0 || 03:0;
D imm12 imm imm12 immed(next)15:4 = imm12;

The xr16 Specifications

5

2.3 Instruction specification format

Each instruction is specified below. Each specification provides the instruction name, assembly format,
description, and pseudo-code of its operation:

Instruction
15 12 11 8 7 4 3 0
op rd ra rb

Format: instruction rd,ra,rb

Description: Describes the instruction semantics and defines situations in which the behavior
of the instruction or instruction sequence is undefined. If applicable, notes that
the instruction is interlocked.

Operation: /* Describes the instruction’s effects upon the
* architected state and invisible state.
*
* Operations upon the architected state
* are in boldface.
*/

Comment: Optional comments, if any.

2.3.1 Invisible state

Besides the architected state, the instruction set specification employs the following invisible state to model
machine behavior. This state is not necessarily present in any given implementation, but all
implementations behave as if it were.

typedef Word Bit; /* 1 bit */

Word a; /* prefix A operand (as if add) */
Word b; /* prefix B operand (as if add) */
Bit carry_out; /* prefix carry out */
Bit shift_out; /* prefix shift out */

Bit has_imm_prefix; /* pending imm prefix */
Word imm_prefix; /* 12-bit immediate prefix */

Bit can_interrupt; /* interrupt can occur after instruction */

Word t; /* temporary */
Word immed; /* temporary immediate value */

2.3.2 Operation prefixes

Each instruction specification below uses an operation prefix to advance certain aspects of the architected
and invisible state.

Operation pre: pc = pc + 2;
r[0] = 0;
has_imm_prefix = false;
can_interrupt = true;

Operation pre_sign_ext_imm:
if (has_imm_prefix)

immed = imm_prefix11:0 || imm3:0;
else

immed = sign_ext(imm3:0);
pre

The xr16 Specifications

6

Operation pre_byte_offset_imm:
if (has_imm_prefix)

immed = imm_prefix11:0 || imm3:0;
else

immed = 015:4 || imm3:0;
pre

Operation pre_word_offset_imm:
if (has_imm_prefix)

immed = imm_prefix11:0 || imm3:0;
else

immed = 015:5 || imm0 || imm3:1 || 0;
pre

The xr16 Specifications

7

2.4 Instruction specifications

2.4.1 Add
15 12 11 8 7 4 3 0

0 rd ra rb

Format: add rd,ra,rb

Description: Add the two register operands ra and rb and store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

This instruction is interlocked.

Operation: pre
a = r[ra];
b = r[rb];
can_interrupt = false;
r[rd] = r[ra] + r[rb];

2.4.2 Add immediate
15 12 11 8 7 4 3 0

2 rd ra imm

Format: addi rd,ra,imm

Description: Add the register operand ra and the immediate operand and store the result in rd.

This instruction is interlocked.

Operation: pre_sign_ext_immed
a = r[ra];
b = immed;
can_interrupt = false;
r[rd] = r[ra] + immed;

2.4.3 Add carry
15 12 11 8 7 4 3 0

3 rd 4 rb

Format: adc rd,rb

Description: Add the previous instruction’s carry result and the two register operands rd and rb, and
store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

This instruction is interlocked.

Operation: (needs work)
pre
a = r[rd];
b = r[rb];
t = carry_out;
carry_out = carry_sum(r[rd], r[rb], t);
can_interrupt = false;
r[rd] = r[rd] + r[rb] + t;

The xr16 Specifications

8

2.4.4 Add carry immediate
15 12 11 8 7 4 3 0

4 rd 4 imm

Format: adci rd,imm

Description: Add the previous instruction’s carry result and the register operand rd and the immediate
operand, and store the result in rd.

This instruction is interlocked.

Operation: (needs work)
pre_sign_ext_immed
a = r[rd];
b = immed;
t = carry_out;
carry_out = carry_sum(r[rd], immed, t);
can_interrupt = false;
r[rd] = r[rd] + immed + t;

2.4.5 And
15 12 11 8 7 4 3 0

3 rd 0 rb

Format: and rd,rb

Description: Bitwise and the two register operands rd and rb and store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

Operation: pre
r[rd] = r[rd] ∧∧∧∧ r[rb];

2.4.6 And immediate
15 12 11 8 7 4 3 0

4 rd 0 imm

Format: andi rd,imm

Description: Bitwise and the register operand rd and the immediate operand and store the result in rd.

Operation: pre_sign_ext_immed
r[rd] = r[rd] ∧∧∧∧ immed;

2.4.7 And not
15 12 11 8 7 4 3 0

3 rd 3 rb

Format: andn rd,rb

Description: Bitwise and the register operand rd with the complement of the register operand rb and
store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

Operation: pre
r[rd] = r[rd] ∧∧∧∧ ~r[rb];

The xr16 Specifications

9

2.4.8 And not immediate
15 12 11 8 7 4 3 0

4 rd 3 imm

Format: andni rd,imm

Description: Bitwise and the register operand rd with the complement of the immediate operand and
store the result in rd.

Operation: pre_sign_ext_immed
r[rd] = r[rd] ∧∧∧∧ ~immed;

2.4.9 Branch
15 12 11 8 7 0

B 0 disp

Format: br label

Description: Unconditional branch to label.

Operation: pre
pc += 2××××sign_ext(disp7:0) + 2;

2.4.10 Branch on equal
15 12 11 8 7 0

B 2 disp

Format: beq label

Description: Branch to label if the operands of the branch prefix compare equal.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (a == -b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.11 Branch on not equal
15 12 11 8 7 0

B 3 disp

Format: bne label

Description: Branch to label if the operands of the branch prefix compare not equal.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (a != -b)

pc += 2××××sign_ext(disp7:0) + 2;

The xr16 Specifications

10

2.4.12 Branch on carry
15 12 11 8 7 0

B 4 disp

Format: bc label

Description: Branch to label if the sum of the operands of the branch prefix, interpreted as unsigned
integers, produces a carry-out.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (carry_sum(a, b))

pc += 2××××sign_ext(disp7:0) + 2;

2.4.13 Branch on not carry
15 12 11 8 7 0

B 5 disp

Format: bnc label

Description: Branch to label if the sum of the operands of the branch prefix, interpreted as unsigned
integers, does not produce a carry-out.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (!carry_sum(a, b))

pc += 2××××sign_ext(disp7:0) + 2;

2.4.14 Branch on overflow
15 12 11 8 7 0

B 6 disp

Format: bv label

Description: Branch to label if the sum of the operands of the branch prefix, interpreted as signed
integers, overflows.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (overflow_sum(a, b))

pc += 2××××sign_ext(disp7:0) + 2;

2.4.15 Branch on not overflow
15 12 11 8 7 0

B 7 disp

Format: bnv label

Description: Branch to label if the sum of the operands of the branch prefix, interpreted as signed
integers, does not overflow.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (!overflow_sum(a, b))

pc += 2××××sign_ext(disp7:0) + 2;

The xr16 Specifications

11

2.4.16 Branch on less than
15 12 11 8 7 0

B 8 disp

Format: blt label

Description: Branch to label if the first operand of the branch prefix is less than the second operand,
treating both operands as signed 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if ((signed)a < (signed)-b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.17 Branch on greater than or equal
15 12 11 8 7 0

B 9 disp

Format: bge label

Description: Branch to label if the first operand of the branch prefix is greater than or equal to the
second operand, treating both operands as signed 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if ((signed)a >= (signed)-b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.18 Branch on less than or equal
15 12 11 8 7 0

B A disp

Format: ble label

Description: Branch to label if the first operand of the branch prefix is less than or equal to the
second operand, treating both operands as signed 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if ((signed)a <= (signed)-b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.19 Branch on greater than
15 12 11 8 7 0

B B disp

Format: bgt label

Description: Branch to label if the first operand of the branch prefix is greater than the second
operand, treating both operands as signed 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if ((signed)a > (signed)-b)

pc += 2××××sign_ext(disp7:0) + 2;

The xr16 Specifications

12

2.4.20 Branch on less than unsigned
15 12 11 8 7 0

B C disp

Format: bltu label

Description: Branch to label if the first operand of the branch prefix is less than the second operand,
treating both operands as unsigned 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (a < (Word)-b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.21 Branch on greater than or equal unsigned
15 12 11 8 7 0

B D disp

Format: bgeu label

Description: Branch to label if the first operand of the branch prefix is greater than or equal to the
second operand, treating both operands as unsigned 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (a >= (Word)-b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.22 Branch on less than or equal unsigned
15 12 11 8 7 0

B E disp

Format: bleu label

Description: Branch to label if the first operand of the branch prefix is less than or equal to the second
operand, treating both operands as unsigned 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (a <= (Word)-b)

pc += 2××××sign_ext(disp7:0) + 2;

2.4.23 Branch on greater than unsigned
15 12 11 8 7 0

B F disp

Format: bgtu label

Description: Branch to label if the first operand of the branch prefix is greater than the second
operand, treating both operands as unsigned 16-bit integers.

Behavior is undefined if the previous instruction is not a branch prefix.

Operation: pre
if (a > (Word)-b)

pc += 2××××sign_ext(disp7:0) + 2;

The xr16 Specifications

13

2.4.24 Call
15 12 11 0

C imm12

Format: call function

Description: Jump to the function specified by imm12 and store the return address (the address of the
next instruction) in r15.

Operation: pre
r[15] = pc;
pc = imm1211:0 || 03:0;

2.4.25 Immediate prefix
15 12 11 0

D imm12

Format: imm imm12

Description: Establish the upper 12 bits of the 16-bit immediate operand of the instruction that
follows.

This instruction is interlocked.

Operation: pre
has_imm_prefix = true;
imm_prefix = imm12;
can_interrupt = false;

2.4.26 Jump and link
15 12 11 8 7 4 3 0

A rd ra imm

Format: jal rd,imm(ra)

Description: Jump to the effective address formed by adding the register operand ra and the immediate
operand, and store the return address (the address of the next instruction) in rd.

Operation: pre_word_off_imm
target = (r[ra] + immed) & ~1;
r[rd] = pc;
pc = target;

2.4.27 Load word
15 12 11 8 7 4 3 0

5 rd ra imm

Format: lw rd,imm(ra)

Description: Load the word at the effective address formed by adding the register operand ra and the
immediate operand, and store it in rd.

Operation: pre_word_off_imm
r[rd] = load_word(r[ra] + immed);

The xr16 Specifications

14

2.4.28 Load byte
15 12 11 8 7 4 3 0

6 rd ra imm

Format: lb rd,imm(ra)

Description: Load the byte at the effective address formed by adding the register operand ra and the
immediate operand, zero-extend the byte, and store the result in rd.

Operation: pre_byte_off_imm
r[rd] = 015:8 || load_byte(r[ra] + immed);

2.4.29 Or
15 12 11 8 7 4 3 0

3 rd 1 rb

Format: or rd,rb

Description: Bitwise or the two register operands rd and rb and store the result in rb.

Behavior is undefined if rb is the result of the previous instruction.

Operation: pre
r[rd] = r[rd] ∨∨∨∨ r[rb];

2.4.30 Or immediate
15 12 11 8 7 4 3 0

4 rd 1 imm

Format: ori rd,imm

Description: Bitwise or the register operand rd and the immediate operand and store the result in rd.

Operation: pre_sign_ext_immed
r[rd] = r[rd] ∨∨∨∨ immed;

2.4.31 Shift left logical immediate
15 12 11 8 7 4 3 0

4 rd 8 imm

Format: slli rd,imm

Description: Shift the destination register rd left by the number of bits specified by the immediate
operand.

Behavior is undefined if the immediate operand does not equal 1.

Operation: pre_sign_ext_immed
shift_out = r[rd]15;
r[rd] = r[rd] << immed;

The xr16 Specifications

15

2.4.32 Shift left extended immediate
15 12 11 8 7 4 3 0

4 rd A imm

Format: slxi rd,imm

Description: Shift the destination register rd, concatenated with the previous instruction’s shift
extension, left by the number of bits specified by the immediate operand.

Behavior is undefined if the immediate operand does not equal 1, or if the previous
instruction is not a shift instruction.

Operation: pre_sign_ext_immed
t = shift_out;
shift_out = r[rd]15;
r[rd] = (r[rd] << immed) | (t << (immed-1));

2.4.33 Shift right logical immediate
15 12 11 8 7 4 3 0

4 rd 6 imm

Format: srli rd,imm

Description: Logical shift the destination register rd right by the number of bits specified by the
immediate operand. Vacated more-significant bits are filled with 0.

Behavior is undefined if the immediate operand does not equal 1.

Operation: pre_sign_ext_immed
shift_out = r[rd]0;
r[rd] = r[rd] >> immed;

2.4.34 Shift right arithmetic immediate
15 12 11 8 7 4 3 0

4 rd 7 imm

Format: srai rd,imm

Description: Arithmetic shift the destination register rd right by the number of bits specified by the
immediate operand. Vacated more-significant bits are filled with the destination register
sign bit.

Behavior is undefined if the immediate operand does not equal 1.

Operation: pre_sign_ext_immed
shift_out = r[rd]0;
r[rd] = (signed)r[rd] >> immed;

The xr16 Specifications

16

2.4.35 Shift right extended immediate
15 12 11 8 7 4 3 0

4 rd 9 imm

Format: srxi rd,imm

Description: Logical shift the previous instruction’s shift extension concatenated with the destination
register rd, right by the number of bits specified by the immediate operand.

Behavior is undefined if the immediate operand does not equal 1, or if the previous
instruction is not a shift instruction.

Operation: pre_sign_ext_immed
t = shift_out;
shift_out = r[rd]0;
r[rd] = (t << 16-immed) | (r[rd] >> immed)

2.4.36 Store word
15 12 11 8 7 4 3 0

8 rd ra imm

Format: sw rd,imm(ra)

Description: Store the register operand rd to memory at the effective address formed by adding the
register operand ra and the immediate operand.

Behavior is undefined if rd is the result of the previous instruction.

Operation: pre_word_off_imm
store_word(r[rd], r[ra] + immed);

2.4.37 Store byte
15 12 11 8 7 4 3 0

9 rd ra imm

Format: sb rd,imm(ra)

Description: Store the least-significant byte of the register operand rd to memory at the effective
address formed by adding the register operand ra and the immediate operand.

Behavior is undefined if rd is the result of the previous instruction.

Operation: pre_byte_off_imm
store_byte(r[rd]7:0, r[ra] + immed);

2.4.38 Subtract
15 12 11 8 7 4 3 0

1 rd ra rb

Format: sub rd,ra,rb

Description: Subtract the register operand rb from the register operand ra and store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

This instruction is interlocked.

Operation: pre
a = r[ra];
b = -r[rb];
can_interrupt = false;
r[rd] = r[ra] - r[rb];

The xr16 Specifications

17

2.4.39 Subtract carry
15 12 11 8 7 4 3 0

3 rd 5 rb

Format: sbc rd,rb

Description: Subtract the previous instruction’s carry result and the register operand rb from the
register operand rd, and store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

This instruction is interlocked.

Operation: (needs work)
pre
a = r[rd];
b = -r[rb];
t = carry_out;
carry_out = carry_sum(r[rd], r[rb], t);
can_interrupt = false;
r[rd] = r[rd] - r[rb] – t;

2.4.40 Subtract carry immediate
15 12 11 8 7 4 3 0

4 rd 5 imm

Format: sbci rd,ra,imm

Description: Subtract the previous instruction’s carry result and immediate operand from the register
operand rd, and store the result in rd.

This instruction is interlocked.

Operation: (needs work)
pre_sign_ext_immed
a = r[rd];
b = -immed;
t = carry_out;
carry_out = carry_sum(r[rd], immed, t);
can_interrupt = false;
r[rd] = r[rd] - immed - t;

2.4.41 Xor
15 12 11 8 7 4 3 0

3 rd 2 rb

Format: xor rd,rb

Description: Bitwise exclusive-or the two register operands rd and rb and store the result in rd.

Behavior is undefined if rb is the result of the previous instruction.

Operation: pre
r[rd] = r[rd] ⊕⊕⊕⊕ r[rb];

The xr16 Specifications

18

2.4.42 Xor immediate
15 12 11 8 7 4 3 0

4 rd 2 imm

Format: xori rd,imm

Description: Bitwise exclusive-or the register operand rd and the immediate operand and store the
result in rd.

Operation: pre_sign_ext_immed
r[rd] = r[rd] ⊕⊕⊕⊕ immed;

The xr16 Specifications

19

3 Assembly Language Specification
This section specifies the features and behavior of the xr16 assembler.

3.1 Transformations

3.1.1 Immediate prefix insertion

The assembler automatically inserts an imm immediate prefix instruction when necessary.

Instructions imm not required imm required
addi andi ori xori andi
adci sbci srli srai
slli srxi slxi

-8 ≤ imm ≤ 7 imm < -8 ∨ imm > 7

lb sb 0 ≤ imm ≤ 15 imm < 0 ∨ imm > 15
lw sw jal 0 ≤ imm ≤ 30 imm < 0 ∨ imm > 30

The imm prefix encodes the most significant 12 bits of the immediate value, imm15:4.

Examples:

addi r1,r1,0x1234 → imm 0x123
addi r1,r1,4

addi r1,r1,8 → imm 0
addi r1,r1,-8

lw r2,0x24(r1) → imm 0x002
lw r2,4(r1)

3.1.2 Result dependency data hazards, operand reordering, and nop insertion

When an assembly instruction sequence exhibits a result dependency data hazard that could cause
undefined behavior (see specifications of add, sub, and, or, xor, andn, adc, sbc, sw, and sb), the
assembler transforms the sequence to eliminate the data hazard.

First the assembler tries to eliminate the hazard by reordering operands, if possible:

addi r1,r1,1 → addi r1,r1,1
add r2,r3,r1 add r2,r1,r3

If operand reordering is not feasible, the assembler inserts a nop:

addi r1,r1,1 → addi r1,r1,1 → addi r1,r1,1
add r2,r1,r1 nop and r0,r0

add r2,r1,r1 add r2,r1,r1

addi r1,r1,1 → addi r1,r1,1 → addi r1,r1,1
sub r2,r3,r1 nop and r0,r0

sub r2,r3,r1 sub r2,r3,r1

lw r1,8(sp) → lw r1,8(r13) → lw r1,8(r13)
sw r1,4(sp) nop and r0,r0

sw r1,4(r13) sw r1,4(r13)

Sometimes other assembler transformations eliminate the data hazard and suppress nop insertion:

The xr16 Specifications

20

lw r1,8(sp) → lw r1,8(r13)
sw r1,0x40(sp) imm 0x004

sw r1,0(r13)

3.1.3 Effective addresses

Throughout this specification, the native instructions lb, lw, sb, sb, jal, and the pseudo-instructions lea,
ll, sl, are described using the underlying imm(ra) form of addressing.

The assembler accepts a number of effective address forms and converts these into the underlying for. The
most general form of address is:

ea ::= { symbol | const }opt { [+|-] const }* { (reg) }opt

After relocations have been applied, any symbol maps into a constant. All constants are folded into a single
immediate value, which may fit in a 4-bit immediate field or may require an immediate prefix. If no base
register is specified, r0 is used.

3.1.4 Far branches

Each branch instruction’s scaled 8-bit displacement field limits the branch displacement to approximately
±128 instructions. When the assembler encounters a branch to label that is further away and so cannot be
represented in a single native branch instruction, it maps the branch into an absolute jump, conditionally
prefixed by the complementary branch condition:

br L1 → j L1 → imm L115:4
jal r0,L13:0(r0)

blt L2 → bge skip → bge skip
j L2 imm L215:4
skip: jal r0,L23:0(r0)

skip:

(Of course, replacing far branches with jumps makes code larger which may turn other near branches over
this code into far branches.)

(Far branch conversion is not yet implemented.)

3.1.5 Shift counts

The assembler maps a constant shift count greater than one into a series of 1-bit shifts:

slli r1,3 → slli r1,1
slli r1,1
slli r1,1

3.2 Assembly directives

3.2.1 Text section

Format: text

Description: Specifies that the instructions and data that follow fall in the text (code) section.

3.2.2 Data section

Format: data

Description: Specifies that the data that follow fall in the data section.

The xr16 Specifications

21

3.2.3 Byte data

Format: byte expr

Description: Add a byte with the value expr to the current section.

3.2.4 Word data

Format: word expr

Description: Add a word with the value expr to the current section.

3.2.5 Alignment

Format: align alignment

Description: Alignment must be a power of two. Add zero or more 0 bytes to the current section, until
the current section length is 0 mod 2alignment.

3.3 Assembly pseudo-instructions

Each instruction is specified below. Each specification provides the instruction name, assembly format,
description, and pseudo-code of its operation:

Pseudo
Map: pseudo rd,ra,rb → native rd,ra,rb

Description: Describes the pseudo-instruction semantics and what native instructions it maps
to.

Comment: Optional comments, if any.

The underlying properties of each instruction (well-definedness-in-context, interruptibility) follow from the
native instructions they map to and so are not restated in the pseudo-instruction descriptions.

3.3.1 Compare
Map: cmp ra,rb → sub r0,ra,rb

Description: Compare the operand registers ra and rb. cmp is always followed by a conditional branch
instruction.

3.3.2 Compare immediate
Map: cmpi ra,imm → addi ra,r0,-imm

Description: Compare the operand registers ra and the immediate value imm. cmpi is always followed
by a conditional branch instruction.

3.3.3 Jump
Map: j imm(ra) → jal r0,imm(ra)

Description: Jump to the effective address formed by adding the register operand ra and the immediate
operand,

The xr16 Specifications

22

3.3.4 Load effective address
Map: lea rd,imm(ra) → addi rd,ra,imm

Description: Determine the effective address formed by adding the register operand ra and the
immediate operand, and store it in rd.

3.3.5 Load byte signed
Map: lbs rd,imm(ra) → lb rd,imm(ra) → lb rd,imm(ra)

xori rd,0x80 imm 0x008
subi rd,rd,0x80 xori rd,0

imm 0xFF8
addi rd,rd,0

Description: Load the byte at the effective address formed by adding the register operand ra and the
immediate operand, sign-extend the byte, and store the result in rd.

3.3.6 No operation
Map: nop → and r0,r0

Description: Do nothing.

Comment: Using and instead of the more traditional add ensures this pseudo-instruction is
interruptible.

3.3.7 Move
Map: mov rd,ra → add rd,ra,r0

Description: Read the value of register ra and store the result in rd.

3.3.8 Return
Map: ret → jal r0,0(r15)

Description: Jump to the return address in r15.

3.3.9 Return from interrupt
Map: reti → jal r0,0(r14)

Description: Jump to the interrupt return address in r14.

3.3.10 Sign extend
Map: sext rd,ra → movopt rd,ra (omit if rd=ra)

andi rd,0xFF
xori rd,0x80
subi rd,rd,0x80

Description: Sign-extend the byte in ra7:0 into a word and store the result in rd.

The xr16 Specifications

23

3.3.11 Subtract immediate
Map: subi rd,ra,imm → addi rd,ra,-imm

Description: Subtract the immediate operand from the register operand ra and store the result in rd.

3.3.12 Zero extend
Map: zext rd,ra → movopt rd,ra (omit if rd=ra)

andi rd,0xFF

Description: Zero-extend the byte in ra7:0 into a word and store the result in rd.

3.4 Long word pseudo-operations

In memory, 32-bit long words are stored in big endian format. (See 2.1.4).

In registers, the less-significant 16-bits of the long word are stored in rx and the more-significant 16-bits in
rx´, where x´ := 0 if x = 0 and x´ := x + 1 if 0 < x ≤ 11.

3.4.1 Add long
Map: addl rd,ra,rb → movopt rd´,ra´ (omit if rd=ra)

add rd,ra,rb
adc rd´,rb´

Description: Add the two long register operand pairs (ra,ra´) and (rb,rb´) and store the result in
(rd,rd´).

3.4.2 And long
Map: andl rd,rb → and rd,rb

and rd´,rb´

Description: Bitwise and the two long register operand pairs (rd,rd´) and (rb,rb´) and store the result in
(rd,rd´).

3.4.3 And not long
Map: andnl rd,rb → andn rd,rb

andn rd´,rb´

Description: Bitwise and the long register operand (rd,rd´) with the long complement of the long
register operand (rb,rb´) and store the result in (rd,rd´).

3.4.4 Or long
Map: orl rd,rb → or rd,rb

or rd´,rb´

Description: Bitwise or the two long register operand pairs (rd,rd´) and (rb,rb´) and store the result in
(rd,rd´).

The xr16 Specifications

24

3.4.5 Xor long
Map: xorl rd,rb → xor rd,rb

xor rd´,rb´

Description: Bitwise exclusive-or the two long register operand pairs (rd,rd´) and (rb,rb´) and store the
result in (rd,rd´).

3.4.6 Load long
Map: ll rd,imm(ra) → lw rd,imm+2(ra)

lw rd´,imm(ra)

Description: Load the long word at the effective address formed by adding the register operand ra and
the immediate operand, and store it in the long register pair (rd,rd´).

3.4.7 Load immediate long
Map: lil rd,imm → addi rd,r0,imm15:0

addi rd´,r0,imm31:16

Description: Load the long immediate and store it in the long register pair (rd,rd´).

3.4.8 Move long
Map: movl rd,ra → add rd,ra,r0

add rd´,ra´,r0

Description: Read the long value of register pair (ra,ra´) and store the result in (rd,rd´).

3.4.9 Subtract long
Map: subl rd,ra,rb → movopt rd´,ra´ (omit if rd=ra)

sub rd,ra,rb
sbc rd´,rb´

Description: Subtract the long value of register pair (rb,rb´) from the long value of register pair
(ra,ra´) and store the result in (rd,rd´).

3.4.10 Store long
Map: sl rd,imm(ra) → sw rd,imm+2(ra)

sw rd´,imm(ra)

Description: Store the value of the long register pair (rd,rd´) to memory at the effective address
formed by adding the register operand ra and the immediate operand.

The xr16 Specifications

25

4 Calling Conventions Specification
This section specifies the register assignments, calling conventions, stack frame layouts, etc. that provide
the C language runtime environment.

(These are not necessarily the best design choices, but reflect the current behavior of the compiler.)

4.1 Register conventions

This table describes how each register is used for C code.

Register Use Save Policy
r0 always zero -
r1 reserved for assembler reserved
r2 function return value -
r3 first argument caller save
r4 second argument caller save
r5 third argument caller save
r6 temporary caller save
r7 temporary caller save
r8 temporary caller save
r9 temporary caller save
r10 local variable callee save
r11 local variable callee save
r12 local variable callee save
r13 stack pointer (sp) callee save
r14 interrupt return address reserved
r15 return address callee save

The caller is responsible for saving any of its live caller save registers across function calls. The called
function is responsible for preserving callee save registers on behalf of its caller.

4.2 Argument and return value passing

To pass arguments to a function, apply these rules:
• chars: padded and passed as words;
• words (integer and pointer data): passed in registers or in memory;
• longs: passed in a pair of registers or in memory;
• aggregates (structs and unions): reserve storage in the caller’s stack frame for a copy of the aggregate;

copy the actual argument into the copy, and pass a pointer to the copy.

To return a value from a function, apply these rules:
• words: returned in r2;
• longs: returned in (r2,r3);
• aggregates (structs and unions): pass a pointer to the aggregate that is assigned the result in the caller;

if the result is to be discarded, reserve storage in the caller’s stack frame for the discarded result. The
result aggregate pointer is passed as an implicit first argument, in r3.

Incoming arguments are found in left to right order in the argument registers r3-r5 and/or starting at
address 0(sp). For example, a function with five int arguments receives the first three in r3-r5 and the
last two at 6(sp) and 8(sp). And for this function foo():

typedef struct X { int a, b, c, d; } X;
X foo(int i, X x, int j, long l, int k);

we have

The xr16 Specifications

26

r3 : X* /* return_value address */;
r4 : i
r5 : X* /* x address */

6(sp) : j
8(sp) : l
12(sp) : k

4.3 Stack frame

The stack grows down from higher addresses to lower addresses.

The first instructions of each function form the function prolog. This adjusts the stack pointer downward to
allocate storage for the activation record, and saves any callee save registers that may be modified by the
function.

The last instructions of each function form the function epilog. This reloads the callee save registers saved
by the function prolog, adjusts the stack pointer to release the activation record storage, and returns to the
caller return address in r15.

On entry to the function, arguments start at 0(sp), except that up to the first 3 scalar arguments are found
in r3-r5.

The activation record consists of:
• callee save registers
• local variables
• temporaries
• outgoing call argument lists

The stack pointer is adjusted only once in the function prolog and once in the epilog. Therefore the
activation record is sized to handle the worst case (largest possible) outgoing call argument list of any of
the call sites in the function.

(Alloca not yet designed.)

4.4 Variable argument functions

Upon entry to a varargs function, any arguments passed in registers are homed, storing them to the stack
frame in memory at 0(sp). At that point all arguments are stored sequentially in memory, greatly
simplifying an implementation of the stdarg.h macros.

int foo(int i, int j, ...) { return i + j; }
↓
_foo:
sw r3,0(sp)
sw r4,2(sp)
sw r5,4(sp)
lw r9,0+0(sp)
lw r8,2+0(sp)
add r2,r9,r8
L1:
ret

The xr16 Specifications

27

/* stdarg.h */
#ifndef _STDARG
#define _STDARG

typedef char* va_list;

#define _ROUNDUP(a,n) (((a) + (n) - 1) & ~((n) - 1))
#define _WORDS(t) (int)(_ROUNDUP(sizeof(t), sizeof(char*)))
#define va_start(ap,v) ((ap) = ((va_list)&v + _WORDS(v)))
#define va_arg(ap,t) (*(t*)(((ap) += _WORDS(t)) - _WORDS(t)))
#define va_end(ap) ((ap) = 0)

#endif /* !_STDARG */

(Note this varargs scheme is incompatible with (broken with respect to) passing aggregate values by
reference to copy. When possible the compiler should be changed to pass aggregates directly on the stack.)

The xr16 Specifications

28

5 Systems Programming Specification

5.1 Interrupts

When an interrupt request is received, it is held pending until an interruptible instruction is executed. Then
the interrupt is taken. The address of the next instruction is saved in r14 and control transfers to the
interrupt handler:

Operation: if (interrupt_pending && can_interrupt) {
r[14] = pc;
pc = 0x0010; /* interrupt handler */
interrupt_pending = false;

}

When the interrupt handler completes, it executes reti, e.g. jal r0,0(r14), and execution resumes with
the interrupted instruction.

The interrupt controller (together with the interrupt handler) is responsible for ensuring a second interrupt
request is not received before the interrupt handler has returned.

The xr16 Specifications

29

6 Implementation Specification
This section specifies properties of the xr16 core, an implementation of the xr16 instruction set architecture.
Other implementations may exhibit different properties.

The cycle timings presented in this section assume the XSOC system-on-a-chip infrastructure and the
external byte-wide asynchronous SRAM of the XESS XS40 board, as described in the article series.

6.1 Core interface

6.2 Instruction timings

This table describes the various t* memory latency parameters and example cycle counts for accesses to the
external byte-wide asynchronous SRAM.

Parameter Description Cycles
ti fetch instruction 1
trw read word 1
trb read byte 1
tww write word 3
twb write byte 2

This table specifies the number of cycles required to execute each native instruction. The Typical column
gives specific cycle counts assuming instructions and data lie in the external RAM.

Instructions Cycles Typ
add addi sub and or xor andn adc sbc
andi ori xori andni adci sbci srli
srai slli srxi slxi imm

ti 1

lw ti + trw 2
lb ti + trb 2
sw ti + tww 4
sb ti + twb 3
beq bne bc bnc bv bnv blt bge ble
bgt bltu bgeu bleu bgtu
branch taken

3ti 3

beq bne bc bnc bv bnv blt bge ble
bgt bltu bgeu bleu bgtu
branch not taken

ti 1

br jal call 3ti 3

6.3 I/O Space

The last 256 bytes of the address space (0xFF00-0xFFFF) are reserved for memory mapped I/O control
registers, organized as 8 devices (dev0-dev7), each with 32 bytes of control registers.

The first device, dev0, is the memory management unit.

6.4 Memory management unit

The optional (and as yet unimplemented) MMU provides simple address translation and page protection for
applications and the operating system. The 216 byte application virtual address space is divided into 16 4
KB pages. Each page can be mapped to any 4 KB physical page from a 26-bit physical address space.

Word mmu[16]; /* at address 0xFF00 */

Operation: PA25:12 = mmu13:0[VA15:12]1
PA11:0 = VA11:0;
writable = mmu15[VA15:12];

The xr16 Specifications

30

A store to an unwritable address does not trap; it is simply discarded.

The MMU has no effect on I/O space accesses.

The xr16 Specifications

31

7 Glossary

to-do
branch prefix
undefined behavior

The xr16 Specifications

32

8 Rationale
To quote from the article series,

“INSTRUCTION SET”

“Now we'll refine the instruction set and choose an instruction encoding. Our goals and constraints are:
• cover C (integer) operator set;
• fixed size, 16-bit instructions;
• easily decoded and pipelined simple and regular;
• 3-operand instructions (dest = src1 op src2/imm) as encoding space allows;
• byte addressable − load and store bytes and words;
• big endian (arbitrary choice);
• one addressing mode, disp(reg);
• long ints add/subtract with carry, shift left/right extended.”

“Which instructions merit the most bits? Reviewing early compiler output from test applications shows the
most common instructions (static frequency) are lw (load word), 24%; sw (store word), 13%; mov (reg-reg
move), 12%; lea (load effective address), 8%; call, 8%; br, 6%; and cmp, 6%. Mov, lea, and cmp can be
synthesized from add or sub with r0. 69% of loads/stores use disp(reg) addressing, 21% are absolute,
and 10% are register indirect.”

“Therefore we make these choices:
• add, sub, addi are 3-operand;
• less common operations − logical ops, add/sub with carry, and shifts − are 2-operand to conserve

opcode space;
• r0 always reads as 0;
• 4-bit immediate fields;
• for 16-bit constants, an optional immediate prefix imm establishes the most-significant 12-bits of the

immediate instruction which follows;
• no condition codes, rather use an interlocked compare and conditional branch sequence;
• jal (jump-and-link) jumps to an effective address, saving the return address in a register;
• call func encodes jal r15,func in one 16-bit instruction (provided the function is 16-byte

aligned);
• perform mul, div, rem, and variable and multiple bit shifts in software.”

The xr16 Specifications

33

9 Revision History

Version Date Description
0.5 1999/12/05 First draft of instruction set architecture specification
0.51 1999/12/09 Correct errors found by OM and TC
0.6 1999/12/18 Started calling convention, systems programming, implementation specifications

9.1 Known spec errors
• 2.3 adc/sbc/i are broken

	Introduction
	Instruction Set Architecture Specification
	State
	Data formats
	Program counter
	Register file
	Memory
	Instructions

	Instruction set summary
	Instruction specification format
	Invisible state
	Operation prefixes

	Instruction specifications

	Assembly Language Specification
	Transformations
	Immediate prefix insertion
	Result dependency data hazards, operand reordering, and nop insertion
	Effective addresses
	Far branches
	Shift counts

	Assembly directives
	Text section
	Data section
	Byte data
	Word data
	Alignment

	Assembly pseudo-instructions
	Long word pseudo-operations

	Calling Conventions Specification
	Register conventions
	Argument and return value passing
	Stack frame
	Variable argument functions

	Systems Programming Specification
	Interrupts

	Implementation Specification
	Core interface
	Instruction timings
	I/O Space
	Memory management unit

	Glossary
	Rationale
	Revision History
	Known spec errors

