

Общее описание

Жидкокристаллический модуль MT-16S2D состоит из БИС контроллера управления и ЖК панели. Контроллер управления аналогичен HD44780 фирмы HITACHI и KS0066 фирмы SAMSUNG. Модуль выпускаются в двух вариантах: со светодиодной подсветкой и без нее. Внешний вид приведен на рисунке 1.

Модуль позволяет отображать 2 строки по 16 символов в каждой. Символы отображаются в матрице 5х8 точек. Между символами имеются интервалы шириной в одну отображаемую точку.

Рис 1.

Каждому отображаемому на ЖКИ символу соответствует его код в ячейке ОЗУ модуля.

Модуль содержит два вида памяти - кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК панелью.

Габаритные размеры модуля приведены на рисунке 7.

Внимание! Не допустимо воздействие статического электричества больше 30 вольт.

Модуль позволяет:

- работать как по 8-ми, так и по 4-х битной шине данных (задается при инициализации);
- принимать команды с шины данных (перечень команд приведен в таблице 4);
- записывать данные в ОЗУ с шины данных;
- читать данные из ОЗУ на шину данных;
- читать статус состояния на шину данных (см. табл. 4);
- запоминать до 8 изображений символов, задаваемых пользователем;
- выводить мигающий (или не мигающий) курсор двух типов;
- управлять контрастностью и подсветкой;
- модуль имеет встроенный знакогенератор (см. табл. 5)

Основные сведения

Модуль управляется по параллельному 4-х или 8-ми битному интерфейсу.

Временные диаграммы приведены на рис. 3 и 4, динамические характеристики приведены в таблице 2.

Примеры обмена по интерфейсу приведены на рис. 5 и 6.

Программное управление осуществляется с помощью системы команд, приведенной в таблице 4.

Перед началом работы модуля необходимо произвести начальную установку. Стандартный знакогенератор приведен в таблице 5.

Модуль позволяет задать изображения восьми дополнительных символов знакогенератора, использующихся при работе наравне со стандартными. Пример задания дополнительных символов приведен в таблице 3.

Таблица 1. Динамические характеристики модуля

Название	Обозн.	Min	Max	Единицы
Время цикла чтения/записи	t _{cycE}	1000	-	ns
Длительность импульса разрешения чтения/записи	PW _{EH}	500	-	ns
Время нарастания и спада	t _{Er} t _{Ef}	-	25	ns
Время предустановки адреса	t _{AS}	60	-	ns
Время удержания адреса	t _{AH}	20	-	ns
Время выдачи данных	t _{DDR}	-	400	ns
Время задержки данных	t _{DHR}	10	-	ns
Время предустановки данных	t _{DSW}	200	-	ns
Время удержания данных	t _H	10	-	ns

Управление контрастностью

Контрастность индикатора зависит от напряжения питания ЖК панели (VLCD).

Управление контрастностью производится внешним резистором (рис.2). При поставке модуля контрастность настроена на Vcc= 5B, поэтому при напряжении питания модуля 5B, внешний резистор подключать не обязательно.

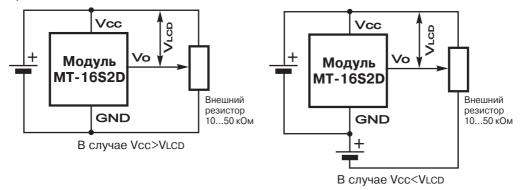


Рис. 2

Характеристики модуля по постоянному току

Таблица 2. Характеристика модуля постоянному току.

2

	Обозначение	Минимум	Типичное	Максимум	Единицы
Напряжение питания	VCC	4		5	В
Ток потребления при 5В	ICC5		0,8	1,0	мА
Ток потребления при 4В	ICC4		120	200	мкА
Входное напряжение высокого уровня	Uıн	2,4		VCC+0,6	В
Входное напряжение низкого уровня	UıL	-0,6		0,8	В
Напряжение питания подсветки при токе 40 mA			4,0	4,2	В

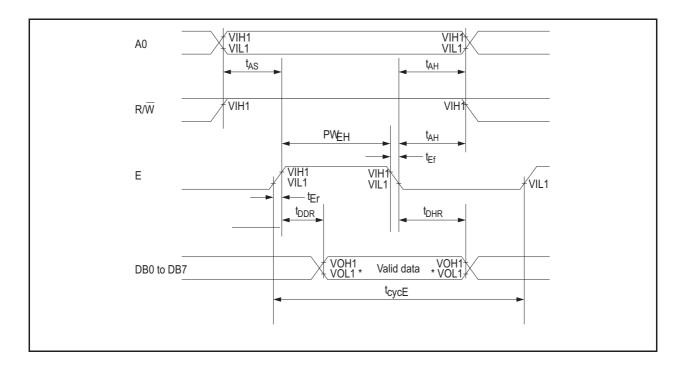


Рис 3. Диаграмма чтения

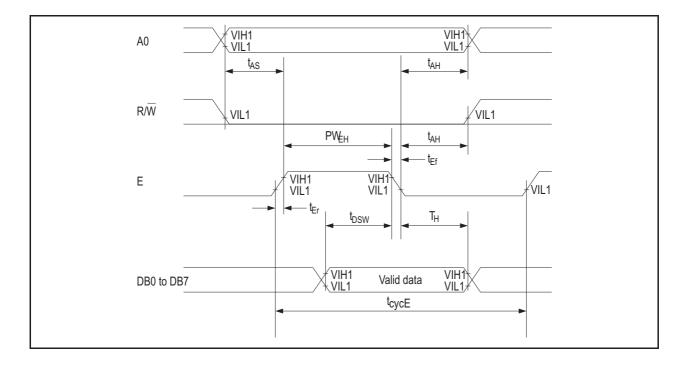


Рис 4. Диаграмма записи

Диаграмма обмена по 4-х битному интерфейсу.

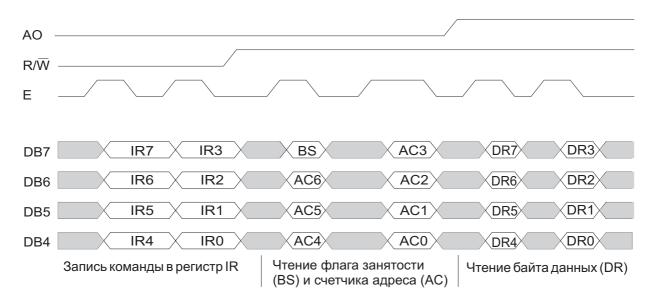


Рис 5.

Примечание. В каждом цикле обмена необходимо передавать (читать или писать) все 8 бит - два раза по 4 бита. Передача старших 4-х бит без последующей передачи младших 4-х бит не допускается.

Диаграмма обмена по 8-ми битному интерфейсу.

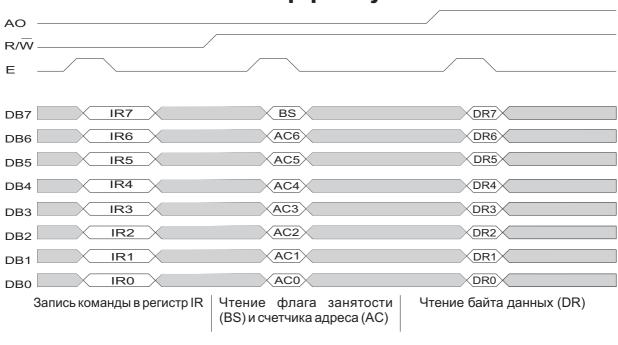
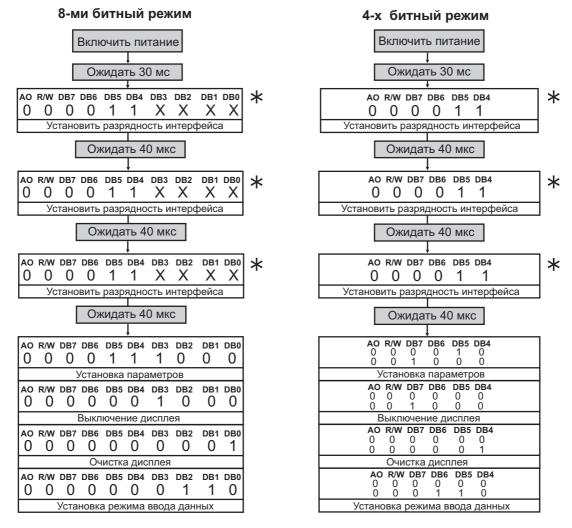



Рис 6.

Начальная установка модуля

Модуль войдет в нормальный режим работы только после подачи на него следующих команд:

* - После этих команд флаг занятости "BS" не проверять! Остальные команды выдавать в соответствии с таблицей 4 и примечаниями под ней.

Примечание. Назначение бит указано в таблице 4.

После этих действий модуль переходит в рабочее состояние с установленными параметрами.

Распределение ОЗУ

Модуль содержит ОЗУ для хранения данных (DDRAM), выводимых на ЖКИ. Адреса отображаемых на ЖКИ символов распределены следующим образом:

Распределение адресов для MT-16S2D

2 1 10 12 13 № Знакоместа 4 11 14 15 16 1-я строка 0h 5h 6h 8h 9h ||0Ah||0Bh||0Ch||0Dh||0Eh| 0Fh 1h 2h 3h 7h 4h Ë 2-я строка 40h |41h| 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh

© МЭЛТ 2003 http://www.melt.aha.ru

Символы, программируемые пользователем

Модуль содержит также память для хранения изображений восьми символов, програмируемых пользователем (CGRAM). Коды этих восьми символов показаны в таб. 5. Адреса строк изображений этих символов не зависят от адресов выводимых символов (расположены в отдельном адресном пространстве) и занимают адреса от 0h до 3Fh. Каждый символ занимает 8 байт (0h-7h, 8h-Fh, 10h-17h, ..., 30h-37h, 38h-3Fh). Нумерация байт идет в порядке отображения на индикаторе сверху вниз (первый байт самый верхний, восьмой байт самый нижний). Последняя, восьмая строка используется также для отображения курсора (если выбран курсор в виде подчеркивания). В каждом байте используются только 5 младших бит (4,3,2,1,0), старшие 3 бита (7,6,5) могут быть любые, на отображение они не влияют. Бит 4 соответствует левому столбцу матрицы символа, бит 0 - правому столбцу символа. Пример см. в таблице 3.

Таблица 3.

	Адрес в знакогенераторе	Значения в знакогенераторе	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
0 0 0 0 * 0 0 0	0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1	* * * 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0	УИзображение первого символа Позиция для курсора
0 0 0 0 * 0 0 1	0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1	* * * * 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1	Изображение второго символаПозиция для курсора
	0 0 0 0 0 1	* * *	
0 0 0 0 * 1 1 1	1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1	* * *	

^{* -} значение не влияет на отображение

Аналоги модулей

мэлт	BOLYMIN	WINTEK	SUNLIKE
MT-16S2D	SC1602D	WD-C1602P	SC1602D

Описание команд модуля

Таблица 4.

Команда	A 0	$\frac{R}{\overline{W}}$	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Описание	Время выполнения
Clear Display	0	0	0	0	0	0	0	0	0	1	Очищает индикатор и помещает курсор в самую левую позицию	1,5 мс
Return Home	0	0	0	0	0	0	0	0	1	χ	Перемещает курсор в левую позицию	40 мкс
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Установка направления сдвига курсора и разрешение сдвига дисплея	40 мкс
Display ON/OFF control	0	0	0	0	0	0	1	D	С	В	Включает индикатор (D=1), курсор (C=1) и выбирает тип курсора: мигающий блок (B=1) или подчеркивание (B=0)	40 мкс
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	Χ	χ	Выполняет сдвиг дисплея или курсора (S/C) вправо или влево (R/L)	40 мкс
Function Set	0	0	0	0	1	DL	1	0	0	0	Установка разрядности интерфейса: DL=0 - 4 бита, DL=1 - 8 бит	40 мкс
Set CGRAM Address	0	0	0	1	1 ACG		Установка адреса для последующих операций (и установка туда курсора) и выбор области CGRAM	40 мкс				
Set DDRAM Address	0	0	1		ADD					Установка адреса для последующих операций и выбор области DDRAM	40 мкс	
Read BUSY flag and Address	0	1	BS	AC					Прочитать флаг занятости и содержимое счетчика адреса			
Write Data to RAM	1	0			Write Data					Запись данных в активную область	40 мкс	
Read Data from RAM	1	1			Read Data		Чтение данных из активной области	40 мкс				

Примечания.

^{1.} Указанное время является максимальным. Его не обязательно выдерживать при условии чтения флага занятости BS - как только флаг BS=0, так сразу можно писать следующую команду или данные. Если же флаг BS перед выдачей команд не проверяется - необходимо формировать паузу не менее указанного времени для надежной работы модуля.

^{2.} Большая Х - любое значение (0 или 1).

Таблица 5. Стандартный знакогенератор.

Старшая цифра кода символа (в шестнадцатиричном виде)

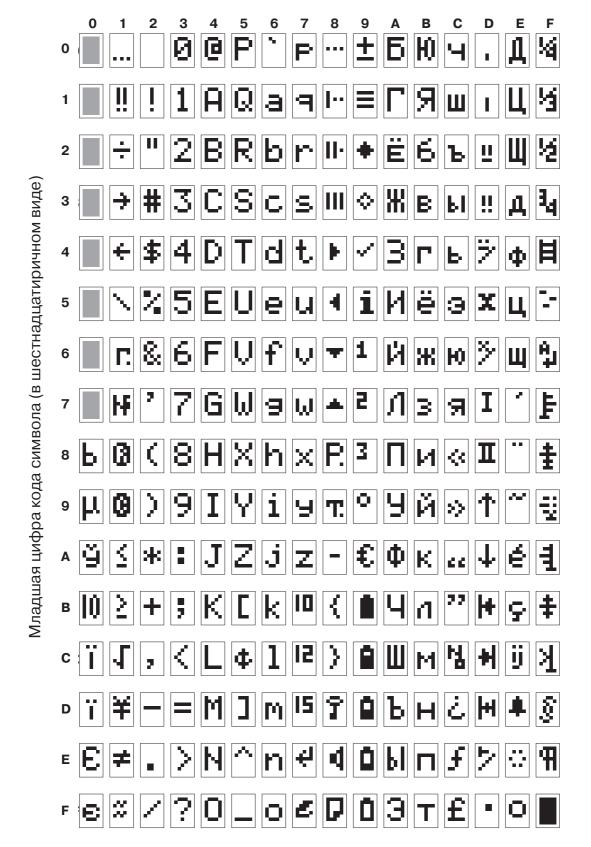


Таблица 8. Назначение внешних выводов

Вывод	Обозначение	Назначение вывода
1	GND	Общий вывод (0V)
2	VCC	Напряжение питания (5V)
3	Vo	Управление контрастностью
4	A0	Адресный сигнал - выбор между передачей данных и команд управления
5	R/W	Выбор режима записи или чтения
6	E	Разрешение обращений к модулю (а также строб данных)
7	DB0	Шина данных (8-ми битный режим) (младший бит в 8-ми битном режиме)
8	DB1	Шина данных (8-ми битный режим)
9	DB2	Шина данных (8-ми битный режим)
10	DB3	Шина данных (8-ми битный режим)
11	DB4	Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12	DB5	Шина данных (8-ми и 4-х битные режимы)
13	DB6	Шина данных (8-ми и 4-х битные режимы)
14	DB7	Шина данных (8-ми и 4-х битные режимы) (старший бит)
15	+LED	+ питания подсветки
16	-LED	- питания подсветки

Габаритные размеры модуля MT-16S2D

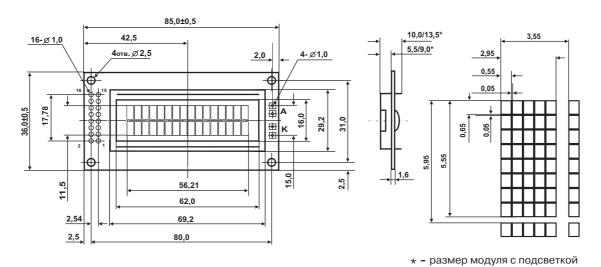


Рис. 7

Компания МЭЛТ

Наши координаты

🖂 Адрес: Москва, Нижегородская ул, дом 33.

🖿 тел: (095) 278-9660, 278-9674, факс: (095) 913-8421

e-mail: melt@space.ruhttp://www.melt.aha.ru

Авторские права © 2003 МЭЛТ. Все права защищены. Принципиальные схемы и топология печатных плат, описанных в этом документе, не могут быть скопированы или воспроизведены в любой форме или любыми средствами без предварительного письменного разрешения компании МЭЛТ.

Информация, содержащаяся в этом документе, может быть изменена без предварительного уведомления.

Компания МЭЛТ не несет ответственности за любые ошибки, которые могут появиться в этом документе, ровно как и за прямые или косвенные убытки, связанные с поставкой или использованием настоящей информации.

Самые последние спецификации Вы всегда можете получить на нашем сервере в интернете по адресу http://www.melt.aha.ru

Компания МЭЛТ непрерывно работает над улучшением качества и надежности наших изделий. Однако, изделия, содержащие полупроводники, могут частично или полностью потерять свою работоспособность вследствие воздействия статического электричества или механических нагрузок. Поэтому при использовании наших продуктов следует избегать ситуаций, в которых сбой или отказ изделий компании МЭЛТ, могут вызвать потерю человеческой жизни, а также ущерб или повреждение собственности.

Подписано в печать 20 мая 2003 года. Формат А4. Отпечатано в России.

Классификация индикаторов

Примечание:

TN positive - серый фон, черные символы

TN negative - черный фон, прозрачные символы (требуется подсветка)

Фирма изготовитель (МЭЛТ)

STN gray - серый фон, сине-фиолетовые символы

STN blue - темно-синий фон, прозрачные символы (требуется подсветка)

STN yellow - желто-зеленый фон, темно-синие символы

FSTN positive - серый фон, черные символы, высокий контраст и широкий угол обзора